Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification
- URL: http://arxiv.org/abs/2411.17350v1
- Date: Tue, 26 Nov 2024 11:52:47 GMT
- Title: Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification
- Authors: Yuanchen Bei, Weizhi Chen, Hao Chen, Sheng Zhou, Carl Yang, Jiapei Fan, Longtao Huang, Jiajun Bu,
- Abstract summary: We propose a Correlation-aware Graph Convolutional Network (CorGCN) for multi-label node classification.
By introducing a novel Correlation-Aware Graph Decomposition module, CorGCN can learn a graph that contains rich label-correlated information for each label.
- Score: 32.4968073593255
- License:
- Abstract: Multi-label node classification is an important yet under-explored domain in graph mining as many real-world nodes belong to multiple categories rather than just a single one. Although a few efforts have been made by utilizing Graph Convolution Networks (GCNs) to learn node representations and model correlations between multiple labels in the embedding space, they still suffer from the ambiguous feature and ambiguous topology induced by multiple labels, which reduces the credibility of the messages delivered in graphs and overlooks the label correlations on graph data. Therefore, it is crucial to reduce the ambiguity and empower the GCNs for accurate classification. However, this is quite challenging due to the requirement of retaining the distinctiveness of each label while fully harnessing the correlation between labels simultaneously. To address these issues, in this paper, we propose a Correlation-aware Graph Convolutional Network (CorGCN) for multi-label node classification. By introducing a novel Correlation-Aware Graph Decomposition module, CorGCN can learn a graph that contains rich label-correlated information for each label. It then employs a Correlation-Enhanced Graph Convolution to model the relationships between labels during message passing to further bolster the classification process. Extensive experiments on five datasets demonstrate the effectiveness of our proposed CorGCN.
Related papers
- TGNN: A Joint Semi-supervised Framework for Graph-level Classification [34.300070497510276]
We propose a novel semi-supervised framework called Twin Graph Neural Network (TGNN)
To explore graph structural information from complementary views, our TGNN has a message passing module and a graph kernel module.
We evaluate our TGNN on various public datasets and show that it achieves strong performance.
arXiv Detail & Related papers (2023-04-23T15:42:11Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
We propose a general framework for multi-label image classification that can effectively mine complex inter-label relationships.
Our proposed methods can achieve state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2022-03-08T12:39:05Z) - Label-Wise Message Passing Graph Neural Network on Heterophilic Graphs [20.470934944907608]
We investigate a novel framework that performs well on graphs with either homophily or heterophily.
In label-wise message-passing, neighbors with similar pseudo labels will be aggregated together.
We also propose a bi-level optimization method to automatically select the model for graphs with homophily/heterophily.
arXiv Detail & Related papers (2021-10-15T14:49:45Z) - Graph Decoupling Attention Markov Networks for Semi-supervised Graph
Node Classification [38.52231889960877]
Graph neural networks (GNN) have been ubiquitous in graph learning tasks such as node classification.
In this paper, we consider the label dependency of graph nodes and propose a decoupling attention mechanism to learn both hard and soft attention.
arXiv Detail & Related papers (2021-04-28T11:44:13Z) - GNN-XML: Graph Neural Networks for Extreme Multi-label Text
Classification [23.79498916023468]
Extreme multi-label text classification (XMTC) aims to tag a text instance with the most relevant subset of labels from an extremely large label set.
GNN-XML is a scalable graph neural network framework tailored for XMTC problems.
arXiv Detail & Related papers (2020-12-10T18:18:34Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
Some work shows that coupling is inferior to decoupling, which supports deep graph propagation better.
Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood.
We propose a new label propagation method named propagation then training Adaptively (PTA), which overcomes the flaws of the decoupled GCN.
arXiv Detail & Related papers (2020-10-23T13:57:39Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGR framework exploits prior knowledge of statistical label correlations with deep neural networks.
It first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence.
Then, it introduces the label semantics to guide learning semantic-specific features.
It exploits a graph propagation network to explore graph node interactions.
arXiv Detail & Related papers (2020-09-20T15:05:29Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Multi-Label Graph Convolutional Network Representation Learning [20.059242373860013]
We propose a novel multi-label graph convolutional network (ML-GCN) for learning node representation for multi-label networks.
The two GCNs each handle one aspect of representation learning for nodes and labels, respectively, and they are seamlessly integrated under one objective function.
arXiv Detail & Related papers (2019-12-26T02:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.