A Generalized Unified Skew-Normal Process with Neural Bayes Inference
- URL: http://arxiv.org/abs/2411.17400v1
- Date: Tue, 26 Nov 2024 13:00:39 GMT
- Title: A Generalized Unified Skew-Normal Process with Neural Bayes Inference
- Authors: Kesen Wang, Marc G. Genton,
- Abstract summary: In recent decades, statisticians have been encountering spatial data that exhibit non-Gaussian behaviors such as asymmetry and heavy-tailedness.
To address the limitations of the Gaussian models, a variety of skewed models has been proposed, of which the popularity has grown rapidly.
Among various proposals in the literature, unified skewed distributions, such as the Unified Skew-Normal (SUN), have received considerable attention.
- Score: 1.5388334141379898
- License:
- Abstract: In recent decades, statisticians have been increasingly encountering spatial data that exhibit non-Gaussian behaviors such as asymmetry and heavy-tailedness. As a result, the assumptions of symmetry and fixed tail weight in Gaussian processes have become restrictive and may fail to capture the intrinsic properties of the data. To address the limitations of the Gaussian models, a variety of skewed models has been proposed, of which the popularity has grown rapidly. These skewed models introduce parameters that govern skewness and tail weight. Among various proposals in the literature, unified skewed distributions, such as the Unified Skew-Normal (SUN), have received considerable attention. In this work, we revisit a more concise and intepretable re-parameterization of the SUN distribution and apply the distribution to random fields by constructing a generalized unified skew-normal (GSUN) spatial process. We demonstrate { that the GSUN is a valid spatial process by showing its vanishing correlation in large distances} and provide the corresponding spatial interpolation method. In addition, we develop an inference mechanism for the GSUN process using the concept of neural Bayes estimators with deep graphical attention networks (GATs) and encoder transformer. We show the superiority of our proposed estimator over the conventional CNN-based architectures regarding stability and accuracy by means of a simulation study and application to Pb-contaminated soil data. Furthermore, we show that the GSUN process is different from the conventional Gaussian processes and Tukey g-and-h processes, through the probability integral transform (PIT).
Related papers
- A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Deep Horseshoe Gaussian Processes [1.0742675209112622]
We introduce the deep Horseshoe Gaussian process Deep-HGP, a new simple prior based on deep Gaussian processes with a squared-exponential kernel.
We show that the associated tempered posterior distribution recovers the unknown true regression curve optimally in terms of quadratic loss, up to a logarithmic factor.
arXiv Detail & Related papers (2024-03-04T05:30:43Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Bayesian Renormalization [68.8204255655161]
We present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference.
The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale.
We provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation.
arXiv Detail & Related papers (2023-05-17T18:00:28Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
A novel generative model framework called the structured generative model (SGM) is proposed that makes straightforward optimization possible.
The implementation employs a single neural network driven by an orthonormal input to a single white noise source adapted to learn an infinite Gaussian mixture model.
Preliminary results show that SGM significantly improves MINE estimation in terms of data efficiency and variance, conventional and variational Gaussian mixture models, as well as for training adversarial networks.
arXiv Detail & Related papers (2021-10-12T07:44:18Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Constraining the Reionization History using Bayesian Normalizing Flows [10.28074017512078]
We present the use of Bayesian Neural Networks (BNNs) to predict the posterior distribution for four astrophysical and cosmological parameters.
Besides achieving state-of-the-art prediction performances, the proposed methods provide accurate estimation of parameters uncertainties and infer correlations among them.
arXiv Detail & Related papers (2020-05-14T23:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.