Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences
- URL: http://arxiv.org/abs/2002.01706v1
- Date: Wed, 5 Feb 2020 10:11:26 GMT
- Title: Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences
- Authors: Aleksandar A. Kolev, Gordon J. Ross
- Abstract summary: We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
- Score: 77.68028443709338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-exciting Hawkes processes are used to model events which cluster in time
and space, and have been widely studied in seismology under the name of the
Epidemic Type Aftershock Sequence (ETAS) model. In the ETAS framework, the
occurrence of the mainshock earthquakes in a geographical region is assumed to
follow an inhomogeneous spatial point process, and aftershock events are then
modelled via a separate triggering kernel. Most previous studies of the ETAS
model have relied on point estimates of the model parameters due to the
complexity of the likelihood function, and the difficulty in estimating an
appropriate mainshock distribution. In order to take estimation uncertainty
into account, we instead propose a fully Bayesian formulation of the ETAS model
which uses a nonparametric Dirichlet process mixture prior to capture the
spatial mainshock process. Direct inference for the resulting model is
problematic due to the strong correlation of the parameters for the mainshock
and triggering processes, so we instead use an auxiliary latent variable
routine to perform efficient inference.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Estimation of spatio-temporal extremes via generative neural networks [0.0]
We provide a unified approach for analyzing spatial extremes with little available data.
By employing recent developments in generative neural networks we predict a full sample-based distribution.
We validate our method by fitting several simulated max-stable processes, showing a high accuracy of the approach.
arXiv Detail & Related papers (2024-07-11T16:57:17Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Mining Causality from Continuous-time Dynamics Models: An Application to
Tsunami Forecasting [22.434845478979604]
We propose a mechanism for mining causal structures from continuous-time models.
We train models to capture the causal structure by enforcing sparsity in the weights of the input layers of the dynamics models.
We apply our method to a real-world problem, namely tsunami forecasting, where the exact causal-structures are difficult to characterize.
arXiv Detail & Related papers (2022-10-10T18:53:13Z) - Machine learning based surrogate modeling with SVD enabled training for
nonlinear civil structures subject to dynamic loading [0.0]
This paper proposes a machine learning based surrogate model framework to predict earthquakes.
The framework is validated by using it to successfully predict the peak response of one-story and three-story buildings.
arXiv Detail & Related papers (2022-06-12T11:57:58Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Constraining subglacial processes from surface velocity observations
using surrogate-based Bayesian inference [0.0]
Basal motion is the primary mechanism for ice flux outside Antarctica, yet a widely applicable model for predicting it remains elusive.
This is due to the difficulty in both observing small-scale bed properties and predicting a time-varying water pressure on which basal motion putatively depends.
We take a Bayesian approach to these problems by coupling models of ice dynamics and subglacial hydrology and conditioning on observations of surface velocity in southwestern Greenland.
arXiv Detail & Related papers (2020-06-22T16:47:33Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
This work extends causal inference with confounders.
We propose a new approach to variational estimation for causal inference based on a representer theorem with a random input space.
arXiv Detail & Related papers (2020-04-24T00:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.