論文の概要: Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey
- arxiv url: http://arxiv.org/abs/2411.17429v1
- Date: Tue, 26 Nov 2024 13:38:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:51.236745
- Title: Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey
- Title(参考訳): GNNにおける過疎化と過密化を緩和するためのリライト技術:サーベイ
- Authors: Hugo Attali, Davide Buscaldi, Nathalie Pernelle,
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフ構造化データから学習するための強力なツールだが,その有効性は2つの重要な課題によって制約されることが多い。
オーバーキャッシング(Oversquashing) – 遠いノードからの情報の過剰な圧縮が大きな情報損失と過度なスムース化をもたらし、繰り返しメッセージパッシングの繰り返しがノード表現を均質化し、意味のある区別を隠蔽する。
本研究では,グラフトポロジを改良して情報拡散を高めることで,これらの構造的ボトルネックに対処する手法であるグラフリウィリング手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their effectiveness is often constrained by two critical challenges: oversquashing, where the excessive compression of information from distant nodes results in significant information loss, and oversmoothing, where repeated message-passing iterations homogenize node representations, obscuring meaningful distinctions. These issues, intrinsically linked to the underlying graph structure, hinder information flow and constrain the expressiveness of GNNs. In this survey, we examine graph rewiring techniques, a class of methods designed to address these structural bottlenecks by modifying graph topology to enhance information diffusion. We provide a comprehensive review of state-of-the-art rewiring approaches, delving into their theoretical underpinnings, practical implementations, and performance trade-offs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なツールであるが、その有効性は、2つの重要な課題によって制約されることが多い。
これらの問題は、本質的にグラフ構造に結びついており、情報の流れを妨げ、GNNの表現性を制限している。
本研究では,グラフトポロジを改良して情報拡散を高めることで,これらの構造的ボトルネックに対処する手法であるグラフリウィリング手法について検討する。
我々は、その理論的基盤、実践的実装、パフォーマンストレードオフを掘り下げて、最先端のリウィリングアプローチの包括的なレビューを提供する。
関連論文リスト
- The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited [0.7373617024876725]
グラフニューラルネットワーク(GNN)におけるメッセージパッシングは支配的なパラダイムである
近年、データと計算グラフから入力グラフを切断し、メッセージパッシングを行うグラフリウィリング技術に力を入れている。
オーバーシャッシングは合成データセットで実証されているが、この研究では、曲率ベースのリワイアリングが現実のデータセットにもたらすパフォーマンス向上を再評価する。
論文 参考訳(メタデータ) (2024-07-12T16:03:58Z) - Over-Squashing in Graph Neural Networks: A Comprehensive survey [0.0]
この調査は、グラフニューラルネットワーク(GNN)におけるオーバースカッシングの課題を掘り下げるものだ。
オーバースカッシングの原因、結果、緩和戦略を包括的に探求する。
グラフの書き換え、新しい正規化、スペクトル分析、曲率に基づく戦略など、様々な手法がレビューされている。
また、オーバー・スムーシングなど、オーバー・スカッシングと他のGNN制限との相互作用についても論じている。
論文 参考訳(メタデータ) (2023-08-29T18:46:15Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - EEGNN: Edge Enhanced Graph Neural Networks [1.0246596695310175]
そこで本研究では,このような劣化した性能現象の新たな説明法を提案する。
このような単純化は、グラフの構造情報を取得するためにメッセージパッシング層の可能性を減らすことができることを示す。
EEGNNは、提案したディリクレ混合ポアソングラフモデルから抽出した構造情報を用いて、様々なディープメッセージパスGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-08-12T15:24:55Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - A Graph Data Augmentation Strategy with Entropy Preserving [11.886325179121226]
本稿では,グラフ間の特徴情報を評価するための定量的指標として,新しいグラフエントロピー定義を提案する。
グラフエントロピーの保存を考慮し、摂動機構を用いてトレーニングデータを生成する効果的な方法を提案する。
提案手法はトレーニング過程におけるGCNの堅牢性と一般化能力を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-13T12:58:32Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。