論文の概要: Object-centric proto-symbolic behavioural reasoning from pixels
- arxiv url: http://arxiv.org/abs/2411.17438v2
- Date: Tue, 11 Feb 2025 11:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:05:31.016276
- Title: Object-centric proto-symbolic behavioural reasoning from pixels
- Title(参考訳): 画素からの物体中心の原始記号的行動推論
- Authors: Ruben van Bergen, Justus Hübotter, Pablo Lanillos,
- Abstract要約: 我々は、ピクセルから学習し、その環境を解釈し、制御し、推論する脳に触発されたディープラーニングアーキテクチャを提案する。
その結果,エージェントは創発的条件付き行動推論を学習できることがわかった。
提案アーキテクチャは、教師なし学習における重要な帰納バイアスとして、接地オブジェクト表現の操作方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Autonomous intelligent agents must bridge computational challenges at disparate levels of abstraction, from the low-level spaces of sensory input and motor commands to the high-level domain of abstract reasoning and planning. A key question in designing such agents is how best to instantiate the representational space that will interface between these two levels -- ideally without requiring supervision in the form of expensive data annotations. These objectives can be efficiently achieved by representing the world in terms of objects (grounded in perception and action). In this work, we present a novel, brain-inspired, deep-learning architecture that learns from pixels to interpret, control, and reason about its environment, using object-centric representations. We show the utility of our approach through tasks in synthetic environments that require a combination of (high-level) logical reasoning and (low-level) continuous control. Results show that the agent can learn emergent conditional behavioural reasoning, such as $(A \to B) \land (\neg A \to C)$, as well as logical composition $(A \to B) \land (A \to C) \vdash A \to (B \land C)$ and XOR operations, and successfully controls its environment to satisfy objectives deduced from these logical rules. The agent can adapt online to unexpected changes in its environment and is robust to mild violations of its world model, thanks to dynamic internal desired goal generation. While the present results are limited to synthetic settings (2D and 3D activated versions of dSprites), which fall short of real-world levels of complexity, the proposed architecture shows how to manipulate grounded object representations, as a key inductive bias for unsupervised learning, to enable behavioral reasoning.
- Abstract(参考訳): 自律的インテリジェントエージェントは、センサー入力とモーターコマンドの低レベル空間から抽象的推論と計画の高レベル領域まで、異なる抽象レベルでの計算課題をブリッジしなければならない。
このようなエージェントを設計する上で重要な問題は、これらの2つのレベルの間を相互作用する表現空間をどのようにインスタンス化するかである。
これらの目的は、オブジェクト(知覚と行動の接地)の観点で世界を表現することで、効率的に達成できる。
本研究では、物体中心の表現を用いて、ピクセルから学習し、その環境を解釈し、制御し、推論する新しい、脳に触発されたディープラーニングアーキテクチャを提案する。
我々は、(高レベル)論理的推論と(低レベル)連続制御の組み合わせを必要とする合成環境におけるタスクによるアプローチの有用性を示す。
その結果、エージェントは、例えば$(A \to B) \land (\neg A \to C)$、論理合成$(A \to B) \land (A \to C) \vdash A \to (B \land C)$およびXOR演算などの創発的な条件付き行動推論を学習でき、これらの論理規則から導出される目的を満たすために、その環境をうまく制御できることを示した。
エージェントは、その環境の予期せぬ変化にオンラインで適応することができ、ダイナミックな内部目標生成のおかげで、世界モデルの軽度な違反に対して堅牢である。
本研究は,実世界の複雑度に欠ける合成設定(2Dおよび3Dアクティベート版dSprites)に限られるが,提案アーキテクチャは,教師なし学習における重要な帰納的バイアスとして,接地対象表現の操作方法を示し,行動推論を可能にする。
関連論文リスト
- Interpretable end-to-end Neurosymbolic Reinforcement Learning agents [20.034972354302788]
この研究は、ニューラルネットワークの強みとシンボリックAIを融合した、ニューロシンボリックAIパラダイムの中に自分自身を置く。
本稿では,異なるAtariゲーム上で,各コンポーネントを個別に評価するエンドツーエンド学習型SCoBotの実装について述べる。
論文 参考訳(メタデータ) (2024-10-18T10:59:13Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
本稿では,アクター批判とモデルに基づくアプローチを組み合わせたオブジェクト中心強化学習アルゴリズムを提案する。
変換器エンコーダを用いてオブジェクト表現とグラフニューラルネットワークを抽出し、環境のダイナミクスを近似する。
本アルゴリズムは,現状のモデルフリーアクター批判アルゴリズムよりも複雑な3次元ロボット環境と構成構造をもつ2次元環境において,より優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-26T06:05:12Z) - Learning Environment-Aware Affordance for 3D Articulated Object
Manipulation under Occlusions [9.400505355134728]
本稿では,オブジェクトレベルの動作可能な事前条件と環境制約の両方を組み込んだ環境対応アベイランスフレームワークを提案する。
本稿では,1つのオクルーダーを含むシーンを学習し,複雑なオクルーダーの組み合わせでシーンに一般化できる新しいコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T08:24:32Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
自己教師付き方法で訓練されたモデルから特徴を再構成することは、完全に教師なしの方法でオブジェクト中心表現が生じるための十分な訓練信号であることを示す。
我々のアプローチであるDINOSAURは、シミュレーションデータ上で既存のオブジェクト中心学習モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-09-29T15:24:47Z) - Online Grounding of PDDL Domains by Acting and Sensing in Unknown
Environments [62.11612385360421]
本稿では,エージェントが異なるタスクを実行できるフレームワークを提案する。
機械学習モデルを統合して、感覚データを抽象化し、目標達成のためのシンボリックプランニング、ナビゲーションのためのパスプランニングを行う。
提案手法を,RGB-Dオンボードカメラ,GPS,コンパスなど,正確なシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2021-12-18T21:48:20Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - DeepSym: Deep Symbol Generation and Rule Learning from Unsupervised
Continuous Robot Interaction for Planning [1.3854111346209868]
ロボットアームハンドシステムは、プッシュとスタックアクションから「ロータブル」、「インサータブル」、「ラーガー・サン」と解釈できるシンボルを学習する。
本システムは,ロボットアームハンドシステムにおいて,その動作から「回転可能」,「不可能」,「大きい」と解釈可能なシンボルを学習する物理に基づく3次元シミュレーション環境で検証する。
論文 参考訳(メタデータ) (2020-12-04T11:26:06Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorldは、ロボット操作環境における因果構造と伝達学習のベンチマークである。
タスクは、ブロックのセットから3D形状を構築することで構成される。
論文 参考訳(メタデータ) (2020-10-08T23:01:13Z) - From proprioception to long-horizon planning in novel environments: A
hierarchical RL model [4.44317046648898]
本稿では,異なるタイプの推論を反映した,単純で3段階の階層型アーキテクチャを提案する。
本手法をMujoco Ant環境における一連のナビゲーションタスクに適用する。
論文 参考訳(メタデータ) (2020-06-11T17:19:12Z) - Relevance-Guided Modeling of Object Dynamics for Reinforcement Learning [0.0951828574518325]
現在の深層強化学習(RL)アプローチでは、環境に関する最小限の事前知識が組み込まれている。
本稿では,最小限およびタスク固有のオブジェクト表現を迅速に決定するために,オブジェクトのダイナミクスと振る舞いを推論するフレームワークを提案する。
また、オブジェクト表現と標準RLと計画アルゴリズムを用いて、Atariゲームにおけるこのフレームワークの可能性を強調し、既存の深層RLアルゴリズムよりも劇的に高速に学習する。
論文 参考訳(メタデータ) (2020-03-03T08:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。