A Graph Neural Network deep-dive into successful counterattacks
- URL: http://arxiv.org/abs/2411.17450v1
- Date: Tue, 26 Nov 2024 14:07:48 GMT
- Title: A Graph Neural Network deep-dive into successful counterattacks
- Authors: Joris Bekkers, Amod Sahasrabudhe,
- Abstract summary: This research builds gender-specific Graph Neural Networks to model the likelihood of a counterattack being successful.
We show, using Permutation Feature, that byline to byline speed, angle to the goal, angle to the ball sideline to sideline speed are the features with the highest impact on model performance.
This research is accompanied by an open-source repository containing all data and code, and it is also accompanied by an open-source Python package.
- Score: 0.0
- License:
- Abstract: A counterattack in soccer is a high speed, high intensity direct attack that can occur when a team transitions from a defensive state to an attacking state after regaining possession of the ball. The aim is to create a goal-scoring opportunity by convering a lot of ground with minimal passes before the opposing team can recover their defensive shape. The purpose of this research is to build gender-specific Graph Neural Networks to model the likelihood of a counterattack being successful and uncover what factors make them successful in professional soccer. These models are trained on a total of 20863 frames of synchronized on-ball event and spatiotemporal (broadcast) tracking data. This dataset is derived from 632 games of MLS (2022), NWSL (2022) and international soccer (2020-2022). With this data we demonstrate that gender-specific Graph Neural Networks outperform architecturally identical gender-ambiguous models in predicting the successful outcome of counterattacks. We show, using Permutation Feature Importance, that byline to byline speed, angle to the goal, angle to the ball and sideline to sideline speed are the node features with the highest impact on model performance. Additionally, we offer some illustrative examples on how to navigate the infinite solution search space to aid in identifying improvements for player decision making. This research is accompanied by an open-source repository containing all data and code, and it is also accompanied by an open-source Python package which simplifies converting spatiotemporal data into graphs. This package also facilitates testing, validation, training and prediction with this data. This should allow the reader to replicate and improve upon our research more easily.
Related papers
- Pseudo Label-Guided Model Inversion Attack via Conditional Generative
Adversarial Network [102.21368201494909]
Model inversion (MI) attacks have raised increasing concerns about privacy.
Recent MI attacks leverage a generative adversarial network (GAN) as an image prior to narrow the search space.
We propose Pseudo Label-Guided MI (PLG-MI) attack via conditional GAN (cGAN)
arXiv Detail & Related papers (2023-02-20T07:29:34Z) - Event Detection in Football using Graph Convolutional Networks [0.0]
We show how to model the players and the ball in each frame of the video sequence as a graph.
We present the results for graph convolutional layers and pooling methods that can be used to model the temporal context present around each action.
arXiv Detail & Related papers (2023-01-24T14:52:54Z) - GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting [121.42898228997538]
We propose an efficient shared encoding for all agents and the map without sacrificing accuracy or generalization.
We leverage pair-wise relative positional encodings to represent geometric relationships between the agents and the map elements in a heterogeneous spatial graph.
Our decoder is also viewpoint agnostic, predicting agent goals on the lane graph to enable diverse and context-aware multimodal prediction.
arXiv Detail & Related papers (2022-11-04T16:10:50Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
We propose a novel Privacy-Preserving neural Graph Matching network model, named PPGM, for graph similarity learning.
To prevent reconstruction attacks, the proposed model does not communicate node-level representations between devices.
To alleviate the attacks to graph properties, the obfuscated features that contain information from both vectors are communicated.
arXiv Detail & Related papers (2022-10-21T04:38:25Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
This paper proposes an accurate expected goal model trained consisting of 315,430 shots from seven seasons between 2014-15 and 2020-21 of the top-five European football leagues.
To best of our knowledge, this is the first paper that demonstrates a practical application of an explainable artificial intelligence tool aggregated profiles.
arXiv Detail & Related papers (2022-06-14T23:56:03Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - RMS-Net: Regression and Masking for Soccer Event Spotting [52.742046866220484]
We devise a lightweight and modular network for action spotting, which can simultaneously predict the event label and its temporal offset.
When tested on the SoccerNet dataset and using standard features, our full proposal exceeds the current state of the art by 3 Average-mAP points.
arXiv Detail & Related papers (2021-02-15T16:04:18Z) - Evaluating Soccer Player: from Live Camera to Deep Reinforcement
Learning [0.0]
We will introduce a two-part solution: an open-source Player Tracking model and a new approach to evaluate these players based solely on Deep Reinforcement Learning.
Our tracking model was trained in a supervised fashion on datasets we will also release, and our Evaluation Model relies only on simulations of virtual soccer games.
We term our new approach Expected Discounted Goal (EDG) as it represents the number of goals a team can score or concede from a particular state.
arXiv Detail & Related papers (2021-01-13T23:26:17Z) - Real-time CNN-based Segmentation Architecture for Ball Detection in a
Single View Setup [23.17839603118139]
This paper considers the task of detecting the ball from a single viewpoint in the challenging but common case where the ball interacts frequently with players.
We propose a novel approach by formulating the problem as a segmentation task solved by an efficient CNN architecture.
Our inference model can run in real time without the delay induced by a temporal analysis.
arXiv Detail & Related papers (2020-07-23T09:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.