論文の概要: Learning 3D Representations from Procedural 3D Programs
- arxiv url: http://arxiv.org/abs/2411.17467v2
- Date: Wed, 04 Jun 2025 11:12:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.77145
- Title: Learning 3D Representations from Procedural 3D Programs
- Title(参考訳): 手続き型3Dプログラムから3D表現を学ぶ
- Authors: Xuweiyi Chen, Zezhou Cheng,
- Abstract要約: 簡単なプリミティブと拡張を使って3次元形状を自動的に生成する手続き型3Dプログラムから3次元表現を学習する。
注目すべきは、手続き的に生成された3D形状から得られた3D表現は、意味的に認識可能な3Dモデルから学んだ最先端の3D表現と同等に実行されることである。
- 参考スコア(独自算出の注目度): 6.915871213703219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning has emerged as a promising approach for acquiring transferable 3D representations from unlabeled 3D point clouds. Unlike 2D images, which are widely accessible, acquiring 3D assets requires specialized expertise or professional 3D scanning equipment, making it difficult to scale and raising copyright concerns. To address these challenges, we propose learning 3D representations from procedural 3D programs that automatically generate 3D shapes using simple primitives and augmentations. Remarkably, despite lacking semantic content, the 3D representations learned from the procedurally generated 3D shapes perform on par with state-of-the-art representations learned from semantically recognizable 3D models (e.g., airplanes) across various downstream 3D tasks, including shape classification, part segmentation, and masked point cloud completion. We provide a detailed analysis on factors that make a good 3D procedural program. Extensive experiments further suggest that current self-supervised learning methods on point clouds do not rely on the semantics of 3D shapes, shedding light on the nature of 3D representations learned.
- Abstract(参考訳): 自己教師付き学習は、ラベルのない3Dポイントクラウドから転送可能な3D表現を取得するための有望なアプローチとして登場した。
広くアクセス可能な2D画像とは異なり、3Dの資産を取得するには専門の専門知識や専門的な3Dスキャン装置が必要である。
これらの課題に対処するために,簡単なプリミティブと拡張を用いて3次元形状を自動的に生成する手続き型3Dプログラムから3次元表現の学習を提案する。
セマンティックな内容の欠如にもかかわらず、手続き的に生成された3D形状から学習した3D表現は、形状分類、部分分割、マスク付き点雲の完成を含む様々な下流3Dタスクにおいて、意味的に認識可能な3Dモデル(例えば飛行機)から学習した最先端の3D表現と同等に実行される。
優れた3Dプロシージャプログラムを実現する要因を詳細に分析する。
さらに大規模な実験により、点雲上の現在の自己教師型学習法は、学習した3次元表現の性質に光を当てながら、三次元形状の意味に頼らないことが示唆された。
関連論文リスト
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer [26.375689838055774]
Direct3Dは、Wildの入力画像にスケーラブルなネイティブな3D生成モデルである。
提案手法は, 直接3次元変分オートエンコーダ(D3D-VAE)と直接3次元拡散変換器(D3D-DiT)の2成分からなる。
論文 参考訳(メタデータ) (2024-05-23T17:49:37Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
ロボット工学のための新しい3D事前学習フレームワークSUGARを紹介した。
SUGARは3次元の点雲を通してオブジェクトの意味的、幾何学的、および余分な特性をキャプチャする。
SuGARの3D表現は最先端の2Dおよび3D表現よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-01T21:23:03Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - Point Cloud Self-supervised Learning via 3D to Multi-view Masked Learner [19.908670991088556]
本稿では,3次元と投影された2次元特徴から点雲と多視点画像を再構成する3次元から多視点自動エンコーダを提案する。
2次元と3次元の表現を整合させる新しい2段階の自己学習戦略が提案されている。
提案手法は,3次元分類,部分分割,オブジェクト検出など,さまざまな下流タスクにおいて,最先端のタスクよりも優れる。
論文 参考訳(メタデータ) (2023-11-17T22:10:03Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
大規模に統一された3次元表現を探索する3次元基礎モデルであるUni3Dを提案する。
Uni3Dは、事前にトレーニングされた2D ViTのエンドツーエンドを使用して、3Dポイントクラウド機能と画像テキスト整列機能とを一致させる。
強力なUni3D表現は、野生での3D絵画や検索などの応用を可能にする。
論文 参考訳(メタデータ) (2023-10-10T16:49:21Z) - 3D VR Sketch Guided 3D Shape Prototyping and Exploration [108.6809158245037]
本稿では,3次元VRスケッチを条件として行う3次元形状生成ネットワークを提案する。
スケッチは初心者がアートトレーニングなしで作成していると仮定する。
本手法は,オリジナルスケッチの構造に整合した複数の3次元形状を生成する。
論文 参考訳(メタデータ) (2023-06-19T10:27:24Z) - CLIP-Guided Vision-Language Pre-training for Question Answering in 3D
Scenes [68.61199623705096]
我々は,モデルが意味論的かつ伝達可能な3Dシーンポイントクラウド表現を学習するのに役立つ,新しい3D事前学習型ビジョンランゲージを設計する。
符号化された3Dシーン特徴と対応する2D画像とテキスト埋め込みとを一致させることにより、人気のあるCLIPモデルの表現力を3Dエンコーダに注入する。
我々は,3次元視覚質問応答の下流課題に対して,我々のモデルによる3次元世界推論能力を評価する。
論文 参考訳(メタデータ) (2023-04-12T16:52:29Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
本研究では,3Dアノテーションを使わずにセマンティックなシーン再構成を行う中心的な3Dシーンモデリングタスクについて検討する。
提案手法の鍵となる考え方は,不完全な3次元再構成と対応するRGB-D画像の両方を用いたトレーニング可能なモデルの設計である。
本研究では,2つの大規模ベンチマークデータセットであるMatterPort3DとScanNetに対して,セマンティックシーン補完の最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T17:47:52Z) - Learning 3D Scene Priors with 2D Supervision [37.79852635415233]
本研究では,3次元の地平を必要とせず,レイアウトや形状の3次元シーンを学習するための新しい手法を提案する。
提案手法は, 3次元シーンを潜在ベクトルとして表現し, クラスカテゴリを特徴とするオブジェクト列に段階的に復号化することができる。
3D-FRONT と ScanNet による実験により,本手法は単一視点再構成における技術状況よりも優れていた。
論文 参考訳(メタデータ) (2022-11-25T15:03:32Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
既存の歩行認識の研究は、制約されたシーンにおける人間の体のシルエットや骨格のような2D表現によって支配されている。
本稿では,野生における歩行認識のための高密度な3次元表現の探索を目的とする。
大規模な3D表現に基づく歩行認識データセットGait3Dを構築した。
論文 参考訳(メタデータ) (2022-04-06T03:54:06Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
入力画像から3次元特徴持ち上げ演算子を用いて3次元シーン空間に整合した3次元ボクセル特徴の正規格子を学習する。
この3Dボクセルの特徴に基づき,新しいCenterNet-3D検出ヘッドは3D空間におけるキーポイント検出として3D検出を定式化する。
我々は、粗度ボキセル化や、新しい局所PCA-SDF形状表現を含む、効率的な粗度から細度の再構成モジュールを考案する。
論文 参考訳(メタデータ) (2021-11-04T18:30:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。