論文の概要: RTL-Breaker: Assessing the Security of LLMs against Backdoor Attacks on HDL Code Generation
- arxiv url: http://arxiv.org/abs/2411.17569v2
- Date: Fri, 13 Dec 2024 15:36:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 14:59:50.100325
- Title: RTL-Breaker: Assessing the Security of LLMs against Backdoor Attacks on HDL Code Generation
- Title(参考訳): RTL-Breaker:HDLコード生成に対するバックドア攻撃に対するLLMのセキュリティ評価
- Authors: Lakshmi Likhitha Mankali, Jitendra Bhandari, Manaar Alam, Ramesh Karri, Michail Maniatakos, Ozgur Sinanoglu, Johann Knechtel,
- Abstract要約: 大規模言語モデル(LLM)は、ハードウェア設計のためのコード生成/補完タスクにおいて顕著な可能性を示している。
LLMはいわゆるデータ中毒やバックドア攻撃の影響を受けやすい。
ここでは、攻撃者はトレーニングデータに対して悪意のあるコードを注入し、LLMによって生成されたHDLコードに渡すことができる。
- 参考スコア(独自算出の注目度): 17.53405545690049
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable potential with code generation/completion tasks for hardware design. In fact, LLM-based hardware description language (HDL) code generation has enabled the industry to realize complex designs more quickly, reducing the time and effort required in the development cycle. However, the increased reliance on such automation introduces critical security risks. Notably, given that LLMs have to be trained on vast datasets of codes that are typically sourced from publicly available repositories (often without thorough validation), LLMs are susceptible to so-called data poisoning or backdoor attacks. Here, attackers inject malicious code for the training data, which can be carried over into the HDL code generated by LLMs. This threat vector can compromise the security and integrity of entire hardware systems. In this work, we propose RTL-Breaker, a novel backdoor attack framework on LLM-based HDL code generation. RTL-Breaker provides an in-depth analysis for essential aspects of this novel problem: 1) various trigger mechanisms versus their effectiveness for inserting malicious modifications, and 2) side-effects by backdoor attacks on code generation in general, i.e., impact on code quality. RTL-Breaker emphasizes the urgent need for more robust measures to safeguard against such attacks. Toward that end, we open-source our framework and all data.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ハードウェア設計のためのコード生成/補完タスクにおいて顕著な可能性を示している。
実際、LCMベースのハードウェア記述言語(HDL)コード生成により、開発サイクルに必要な時間と労力を削減し、複雑な設計をより迅速に実現できるようになった。
しかし、このような自動化への依存度が高まると、重大なセキュリティリスクが生じる。
特に、LLMが一般に公開されているリポジトリ(多くの場合、徹底的な検証なしに)からソースされる大量のコードデータセットでトレーニングされる必要があることを考えると、LSMはいわゆるデータ中毒やバックドア攻撃の影響を受けやすい。
ここでは、攻撃者はトレーニングデータに対して悪意のあるコードを注入し、LLMによって生成されたHDLコードに渡すことができる。
この脅威ベクトルは、ハードウェアシステム全体のセキュリティと整合性を損なう可能性がある。
本研究では,LLMベースのHDLコード生成のためのバックドアアタックフレームワークであるRTL-Breakerを提案する。
RTL-Breakerは、この新しい問題の本質的な側面を詳細に分析する。
1)悪質な修正を挿入するための様々なトリガー機構と効果
2) コード生成に対するバックドア攻撃による副作用、すなわちコード品質への影響。
RTL-ブレイカーは、このような攻撃に対してより堅牢な対策の必要性を強調している。
そのために私たちは,フレームワークとすべてのデータをオープンソースにしています。
関連論文リスト
- Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
インジェクション攻撃に対してLCMをより堅牢にするための強力なツールとしてアライメントが有効であることを示す。
私たちのメソッド -- SecAlign -- は、最初に、プロンプトインジェクション攻撃をシミュレートしてアライメントデータセットを構築します。
実験の結果,SecAlign は LLM を大幅に強化し,モデルの実用性に悪影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2024-10-07T19:34:35Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
大規模言語モデル(LLM)は目覚ましい能力を示している。
その強力な生成能力は、様々なクエリや命令に基づいて柔軟な応答を可能にする。
本稿では,最小サイドエフェクトでNLPタスクをカスタマイズしたバックドアを構築することを目的とした,MEGenという編集ベースの生成バックドアを提案する。
論文 参考訳(メタデータ) (2024-08-20T10:44:29Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection [17.948513691133037]
我々は,コード補完モデルに基づくLLM支援バックドアアタックフレームワークであるCodeBreakerを紹介した。
悪意のあるペイロードを最小限の変換でソースコードに直接統合することで、CodeBreakerは現在のセキュリティ対策に挑戦する。
論文 参考訳(メタデータ) (2024-06-10T22:10:05Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - DeceptPrompt: Exploiting LLM-driven Code Generation via Adversarial
Natural Language Instructions [27.489622263456983]
DeceptPromptは、コードLLMを駆動し、脆弱性のある機能の正しいコードを生成する、逆の自然言語命令を生成するアルゴリズムである。
最適化プレフィックス/サフィックスを適用する場合、アタック成功率(ASR)はプレフィックス/サフィックスを適用せずに平均50%向上する。
論文 参考訳(メタデータ) (2023-12-07T22:19:06Z) - Can LLMs Patch Security Issues? [1.3299507495084417]
LLM(Large Language Models)は、コード生成に優れた習熟度を示している。
LLMは人間と弱点を共有している。
我々は、LLMが生成した脆弱性のあるコードを自動的に洗練するフィードバック駆動セキュリティパッチング(FDSP)を提案する。
論文 参考訳(メタデータ) (2023-11-13T08:54:37Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。