Divide and Conquer based Symbolic Vulnerability Detection
- URL: http://arxiv.org/abs/2409.13478v1
- Date: Fri, 20 Sep 2024 13:09:07 GMT
- Title: Divide and Conquer based Symbolic Vulnerability Detection
- Authors: Christopher Scherb, Luc Bryan Heitz, Hermann Grieder,
- Abstract summary: This paper presents a vulnerability detection approach based on symbolic execution and control flow graph analysis.
Our approach employs a divide-and-conquer algorithm to eliminate irrelevant program information.
- Score: 0.16385815610837165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern software development, vulnerability detection is crucial due to the inevitability of bugs and vulnerabilities in complex software systems. Effective detection and elimination of these vulnerabilities during the testing phase are essential. Current methods, such as fuzzing, are widely used for this purpose. While fuzzing is efficient in identifying a broad range of bugs and vulnerabilities by using random mutations or generations, it does not guarantee correctness or absence of vulnerabilities. Therefore, non-random methods are preferable for ensuring the safety and security of critical infrastructure and control systems. This paper presents a vulnerability detection approach based on symbolic execution and control flow graph analysis to identify various types of software weaknesses. Our approach employs a divide-and-conquer algorithm to eliminate irrelevant program information, thus accelerating the process and enabling the analysis of larger programs compared to traditional symbolic execution and model checking methods.
Related papers
- Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - Patch2QL: Discover Cognate Defects in Open Source Software Supply Chain
With Auto-generated Static Analysis Rules [1.9591497166224197]
We propose a novel technique for detecting cognate defects in OSS through the automatic generation of SAST rules.
Specifically, it extracts key syntax and semantic information from pre- and post-patch versions of code.
We have implemented a prototype tool called Patch2QL and applied it to fundamental OSS in C/C++.
arXiv Detail & Related papers (2024-01-23T02:23:11Z) - Transformer-based Vulnerability Detection in Code at EditTime:
Zero-shot, Few-shot, or Fine-tuning? [5.603751223376071]
We present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns.
We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%.
arXiv Detail & Related papers (2023-05-23T01:21:55Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
The goal of the research is to intelligently detect vulnerabilities in source codes of high-level languages such as C/C++.
This enables us to propose a code representation of sensitive sentence-related slices of source code, and to detect vulnerabilities by designing a distributed deep ensemble learning model.
Experiments show that this method can reduce the false positive rate of traditional static analysis and improve the performance and accuracy of machine learning.
arXiv Detail & Related papers (2022-11-29T14:19:14Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
arXiv Detail & Related papers (2021-04-19T11:50:36Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.