log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling
- URL: http://arxiv.org/abs/2411.03320v3
- Date: Tue, 19 Nov 2024 16:49:12 GMT
- Title: log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling
- Authors: Xiao Hu, Ziqi Chen, Bo Peng, Daniel Adu-Ampratwum, Xia Ning,
- Abstract summary: log-RRIM is an innovative graph transformer-based framework designed for predicting chemical reaction yields.
Our approach implements a unique local-to-global reaction representation learning strategy.
Its advanced modeling of reactant-reagent interactions and sensitivity to small molecular fragments make it a valuable tool for reaction planning and optimization in chemical synthesis.
- Score: 6.310759215182946
- License:
- Abstract: Accurate prediction of chemical reaction yields is crucial for optimizing organic synthesis, potentially reducing time and resources spent on experimentation. With the rise of artificial intelligence (AI), there is growing interest in leveraging AI-based methods to accelerate yield predictions without conducting in vitro experiments. We present log-RRIM, an innovative graph transformer-based framework designed for predicting chemical reaction yields. Our approach implements a unique local-to-global reaction representation learning strategy. This approach initially captures detailed molecule-level information and then models and aggregates intermolecular interactions, ensuring that the impact of varying-sizes molecular fragments on yield is accurately accounted for. Another key feature of log-RRIM is its integration of a cross-attention mechanism that focuses on the interplay between reagents and reaction centers. This design reflects a fundamental principle in chemical reactions: the crucial role of reagents in influencing bond-breaking and formation processes, which ultimately affect reaction yields. log-RRIM outperforms existing methods in our experiments, especially for medium to high-yielding reactions, proving its reliability as a predictor. Its advanced modeling of reactant-reagent interactions and sensitivity to small molecular fragments make it a valuable tool for reaction planning and optimization in chemical synthesis. The data and codes of log-RRIM are accessible through https://github.com/ninglab/Yield_log_RRIM.
Related papers
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
This paper introduces modelname, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism.
We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - Text-Augmented Multimodal LLMs for Chemical Reaction Condition Recommendation [50.639325453203504]
MM-RCR is a text-augmented multimodal LLM that learns a unified reaction representation from SMILES, reaction graphs, and textual corpus for chemical reaction recommendation (RCR)
Our results demonstrate that MM-RCR achieves state-of-the-art performance on two open benchmark datasets.
arXiv Detail & Related papers (2024-07-21T12:27:26Z) - ReactAIvate: A Deep Learning Approach to Predicting Reaction Mechanisms and Unmasking Reactivity Hotspots [4.362338454684645]
We develop an interpretable attention-based GNN that achieved near-unity and 96% accuracy for reaction step classification.
Our model adeptly identifies key atom(s) even from out-of-distribution classes.
This generalizabilty allows for the inclusion of new reaction types in a modular fashion, thus will be of value to experts for understanding the reactivity of new molecules.
arXiv Detail & Related papers (2024-07-14T05:53:18Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways
via Contrastive Learning [45.379791270351184]
RMechRP is a new deep learning-based reaction predictor system.
We develop and train models using RMechDB, a public database of radical reactions.
Our results demonstrate the effectiveness of RMechRP in providing accurate and interpretable predictions.
arXiv Detail & Related papers (2023-11-02T09:47:27Z) - ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision [27.850325653751078]
structured chemical reaction information plays a vital role for chemists engaged in laboratory work and advanced endeavors such as computer-aided drug design.
Despite the importance of extracting structured reactions from scientific literature, data annotation for this purpose is cost-prohibitive due to the significant labor required from domain experts.
We propose ReactIE, which combines two weakly supervised approaches for pre-training. Our method utilizes frequent patterns within the text as linguistic cues to identify specific characteristics of chemical reactions.
arXiv Detail & Related papers (2023-07-04T02:52:30Z) - Self-Improved Retrosynthetic Planning [66.5397931294144]
Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule.
Recent search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs)
We propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties.
arXiv Detail & Related papers (2021-06-09T08:03:57Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.