論文の概要: Attamba: Attending To Multi-Token States
- arxiv url: http://arxiv.org/abs/2411.17685v1
- Date: Tue, 26 Nov 2024 18:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:37:10.269276
- Title: Attamba: Attending To Multi-Token States
- Title(参考訳): Attamba: マルチトークン国家への取り組み
- Authors: Yash Akhauri, Safeen Huda, Mohamed S. Abdelfattah,
- Abstract要約: Attambaは、状態空間モデルを用いてトークンの塊を圧縮する新しいアーキテクチャである。
変換器のキーと値のプロジェクションをSSMに置き換えることで、モデルの品質が向上し、フレキシブルなトークンチャンキングが可能になる。
アタンバは可変長のチャンク列に注意を向けることができ、二次スケーリングと線形スケーリングのスムーズな遷移を可能にする。
- 参考スコア(独自算出の注目度): 6.5676809841642125
- License:
- Abstract: When predicting the next token in a sequence, vanilla transformers compute attention over all previous tokens, resulting in quadratic scaling of compute with sequence length. State-space models compress the entire sequence of tokens into a fixed-dimensional representation to improve efficiency, while other architectures achieve sub-quadratic complexity via low-rank projections or sparse attention patterns over the sequence. In this paper, we introduce Attamba, a novel architecture that uses state-space models to compress chunks of tokens and applies attention on these compressed key-value representations. We find that replacing key and value projections in a transformer with SSMs can improve model quality and enable flexible token chunking, resulting in 24% improved perplexity with transformer of similar KV-Cache and attention footprint, and ~4 times smaller KV-Cache and Attention FLOPs for 5% perplexity trade-off. Attamba can perform attention on chunked-sequences of variable length, enabling a smooth transition between quadratic and linear scaling, offering adaptable efficiency gains.
- Abstract(参考訳): シークエンスで次のトークンを予測するとき、バニラ変換器はすべての前のトークンに注意を向け、列長の計算を2次スケーリングする。
状態空間モデルはトークンの列全体を固定次元の表現に圧縮して効率を向上させる一方、他のアーキテクチャは低ランクの投影やスパースアテンションパターンを通じてサブクワラティックな複雑さを達成する。
本稿では、状態空間モデルを用いてトークンの塊を圧縮し、これらの圧縮キー値表現に注意を払う新しいアーキテクチャであるAttambaを紹介する。
変換器のキーと値のプロジェクションをSSMに置き換えることで、モデル品質を改善し、フレキシブルなトークンチャンキングを可能にし、24%が類似のKVキャッシュとアテンションフットプリントでパープレキシティを改善し、約4倍小さなKVキャッシュとアテンションFLOPを5%パープレキシティトレードオフで実現した。
アタンバは可変長のチャンク列に注意を払うことができ、二次スケーリングと線形スケーリングのスムーズな遷移を可能にし、適応可能な効率向上を提供する。
関連論文リスト
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Efficient Time Series Processing for Transformers and State-Space Models through Token Merging [44.27818172708914]
トークンマージにより、視覚変換器アーキテクチャのスループットが大幅に向上することが示されている。
局所的マージとは、局所的な領域内でトークンを選択的に結合する、ドメイン固有のトークンマージアルゴリズムである。
最近提案されたクロノス基礎モデルでは, わずかな精度劣化のみを伴い, 5400%の加速を実現している。
論文 参考訳(メタデータ) (2024-05-28T08:28:18Z) - Progressive Token Length Scaling in Transformer Encoders for Efficient Universal Segmentation [67.85309547416155]
ユニバーサルセグメンテーションのための強力なアーキテクチャは、マルチスケールの画像特徴を符号化し、オブジェクトクエリをマスク予測にデコードするトランスフォーマーに依存している。
Mask2Formerはその計算の50%をトランスフォーマーエンコーダでのみ使用する。
これは、エンコーダ層ごとにすべてのバックボーン機能スケールのトークンレベルの完全な表現が保持されているためである。
本稿では,パフォーマンスの犠牲を最小限に抑えながら,計算量を大幅に削減するPro-SCALEを提案する。
論文 参考訳(メタデータ) (2024-04-23T01:34:20Z) - Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference [2.8241099113277666]
キーフォーマー」は、KVキャッシュサイズとメモリ帯域幅利用に関する課題を軽減する革新的な推論時アプローチである。
我々はKeyformerの性能を,GPT-J,Cerebras-GPT,MPTの3つの基礎モデルで評価した。
論文 参考訳(メタデータ) (2024-03-14T02:42:42Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
本稿では,密集自己注意の代替として,コンテンツに基づくスパースアテンション手法を提案する。
具体的には、合計トークン数を減少させるコンテンツベースの方法として、キーとバリュートークンをクラスタ化し、集約する。
結果として得られたクラスタ化されたTokenシーケンスは、元の信号のセマンティックな多様性を保持するが、より少ない計算コストで処理できる。
論文 参考訳(メタデータ) (2022-08-28T04:18:27Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - PSViT: Better Vision Transformer via Token Pooling and Attention Sharing [114.8051035856023]
トークンプーリングとアテンション共有を併用したPSViTを提案する。
実験の結果,提案手法は画像ネット分類の精度を最大6.6%向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-08-07T11:30:54Z) - Combiner: Full Attention Transformer with Sparse Computation Cost [142.10203598824964]
計算の複雑さを低く保ちつつ、各注目ヘッドにフルアテンション機能を提供するコンバインダを提案する。
既存のスパース変圧器で使用されるスパースアテンションパターンのほとんどは、そのような分解設計をフルアテンションに刺激することができることを示す。
自己回帰的タスクと双方向シーケンスタスクの両方に関する実験的評価は、このアプローチの有効性を示す。
論文 参考訳(メタデータ) (2021-07-12T22:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。