Analytic Continuation by Feature Learning
- URL: http://arxiv.org/abs/2411.17728v1
- Date: Fri, 22 Nov 2024 05:12:27 GMT
- Title: Analytic Continuation by Feature Learning
- Authors: Zhe Zhao, Jingping Xu, Ce Wang, Yaping Yang,
- Abstract summary: Analytic continuation aims to reconstruct real-time spectral functions from imaginary-time Green's functions.
We propose a novel neural network architecture, named the Feature Learning Network (FL-net), to enhance the prediction accuracy of spectral functions.
- Score: 8.498755880433713
- License:
- Abstract: Analytic continuation aims to reconstruct real-time spectral functions from imaginary-time Green's functions; however, this process is notoriously ill-posed and challenging to solve. We propose a novel neural network architecture, named the Feature Learning Network (FL-net), to enhance the prediction accuracy of spectral functions, achieving an improvement of at least $20\%$ over traditional methods, such as the Maximum Entropy Method (MEM), and previous neural network approaches. Furthermore, we develop an analytical method to evaluate the robustness of the proposed network. Using this method, we demonstrate that increasing the hidden dimensionality of FL-net, while leading to lower loss, results in decreased robustness. Overall, our model provides valuable insights into effectively addressing the complex challenges associated with analytic continuation.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
Deep operator network (DeepNet) has demonstrated success in the real-time prediction of complex dynamics across various scientific and engineering applications.
We introduce a random sampling technique to be adopted the training of DeepONet, aimed at improving generalization ability of the model, while significantly reducing computational time.
Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet, offering a promising avenue for improving the framework's performance in modeling complex physical systems.
arXiv Detail & Related papers (2024-09-20T07:18:31Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
We propose a simulation-free framework for training neural ordinary differential equations (NODEs)
We employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data.
Our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness.
arXiv Detail & Related papers (2024-05-19T13:15:23Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Approximation Power of Deep Neural Networks: an explanatory mathematical survey [0.0]
The survey examines how effectively neural networks approximate target functions and to identify conditions under which they outperform traditional approximation methods.
Key topics include the nonlinear, compositional structure of deep networks and the formalization of neural network tasks as optimization problems in regression and classification settings.
The survey explores the density of neural networks in the space of continuous functions, comparing the approximation capabilities of deep ReLU networks with those of other approximation methods.
arXiv Detail & Related papers (2022-07-19T18:47:44Z) - Functional Network: A Novel Framework for Interpretability of Deep
Neural Networks [2.641939670320645]
We propose a novel framework for interpretability of deep neural networks, that is, the functional network.
In our experiments, the mechanisms of regularization methods, namely, batch normalization and dropout, are revealed.
arXiv Detail & Related papers (2022-05-24T01:17:36Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Kernel-Based Smoothness Analysis of Residual Networks [85.20737467304994]
Residual networks (ResNets) stand out among these powerful modern architectures.
In this paper, we show another distinction between the two models, namely, a tendency of ResNets to promote smoothers than gradients.
arXiv Detail & Related papers (2020-09-21T16:32:04Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.