論文の概要: PROGRESSOR: A Perceptually Guided Reward Estimator with Self-Supervised Online Refinement
- arxiv url: http://arxiv.org/abs/2411.17764v1
- Date: Tue, 26 Nov 2024 04:17:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:49.063257
- Title: PROGRESSOR: A Perceptually Guided Reward Estimator with Self-Supervised Online Refinement
- Title(参考訳): ProGRESSOR: 自己監督型オンラインリファインメントを備えた知覚ガイド型リワード推定器
- Authors: Tewodros Ayalew, Xiao Zhang, Kevin Yuanbo Wu, Tianchong Jiang, Michael Maire, Matthew R. Walter,
- Abstract要約: 本稿では,タスクに依存しない報酬関数をビデオから学習するフレームワークであるProgESSORを提案する。
ProGRESSORは、ロボットが外部の監督なしに複雑な動作を学習できるようにする。
- 参考スコア(独自算出の注目度): 16.768912344111946
- License:
- Abstract: We present PROGRESSOR, a novel framework that learns a task-agnostic reward function from videos, enabling policy training through goal-conditioned reinforcement learning (RL) without manual supervision. Underlying this reward is an estimate of the distribution over task progress as a function of the current, initial, and goal observations that is learned in a self-supervised fashion. Crucially, PROGRESSOR refines rewards adversarially during online RL training by pushing back predictions for out-of-distribution observations, to mitigate distribution shift inherent in non-expert observations. Utilizing this progress prediction as a dense reward together with an adversarial push-back, we show that PROGRESSOR enables robots to learn complex behaviors without any external supervision. Pretrained on large-scale egocentric human video from EPIC-KITCHENS, PROGRESSOR requires no fine-tuning on in-domain task-specific data for generalization to real-robot offline RL under noisy demonstrations, outperforming contemporary methods that provide dense visual reward for robotic learning. Our findings highlight the potential of PROGRESSOR for scalable robotic applications where direct action labels and task-specific rewards are not readily available.
- Abstract(参考訳): 本稿では,課題に依存しない報酬関数をビデオから学習し,手動による監督なしに目標条件強化学習(RL)による政策訓練を可能にする新しいフレームワークであるProgESSORを提案する。
この報奨は、自己監督的な方法で学習された現在の、初期および目標観測の関数として、タスク進捗の分布を推定するものである。
重要なこととして、ProGRESSORは、非専門的な観察に固有の分布シフトを軽減するために、アウト・オブ・ディストリビューション観測の予測を押し戻すことで、オンラインRLトレーニング中に逆向きに報酬を洗練する。
本稿では,この進行予測を敵の押し戻しとともに高密度報酬として活用することにより,ロボットが外部の監視なしに複雑な動作を学習できることを示す。
PROGRESSORはEPIC-KITCHENSの大規模なエゴセントリックな人間ビデオに基づいて、ノイズの多いデモで実ロボットのオフラインRLに一般化するために、ドメイン内のタスク固有のデータを微調整する必要はない。
本研究は,直接動作ラベルやタスク固有報酬が手軽に利用できないスケーラブルなロボットアプリケーションにおけるPROGRESSORの可能性を明らかにするものである。
関連論文リスト
- Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) は、視覚言語モデル(VLM)によって形成される報酬を自律的なRLに活用する手法である。
自然言語記述によって指定された実世界の操作タスクにおいて、KAGIは自律的なRLのサンプル効率を改善し、20Kのオンライン微調整ステップでタスク完了を成功させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Curricular Subgoals for Inverse Reinforcement Learning [21.038691420095525]
逆強化学習(IRL)は、専門家による実証から報酬関数を再構築し、政策学習を促進することを目的としている。
既存のIRL法は主に、模倣者と専門家の軌跡の違いを最小限に抑えるために、グローバル報酬関数の学習に重点を置いている。
エージェントの模倣を導くために,一タスクを複数の局所的なサブゴールで明示的に切り離す,Curricular Subgoal-based Inverse Reinforcement Learningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T04:06:41Z) - Imitation from Observation With Bootstrapped Contrastive Learning [12.048166025000976]
IfO(IfO)は、マルコフ決定プロセスにおいて自律エージェントを訓練する学習パラダイムである。
本稿では,OfOアルゴリズムであるBootIfOLについて紹介する。
我々は,限られた数の実証軌道を用いて効果的な政策を訓練できることを示す,様々な制御タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-02-13T17:32:17Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
逆強化学習(IRL) - エージェントの報酬関数をその振る舞いを観察することから推測する。
本稿では、エージェントの報酬関数を観察することのできないIRLの問題に対処する。
論文 参考訳(メタデータ) (2022-08-09T17:29:49Z) - Imitation by Predicting Observations [17.86983397979034]
本研究では, 連続制御タスクの課題に対して, 専門家に匹敵する性能を達成できる観測結果のみを模倣する新しい手法を提案する。
提案手法は, 逆RL目標から導出され, 専門家の観察結果の生成モデルを用いて学習した専門家の行動モデルを用いて模倣する。
本稿では,DeepMind Control Suiteベンチマークにおける強力なベースラインIRL法(GAIL)に対して,タスク非関連機能の存在下でGAILよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-07-08T14:09:30Z) - Residual Reinforcement Learning from Demonstrations [51.56457466788513]
報酬信号の最大化のために,従来のフィードバックコントローラからの制御動作を適用することで,ロボット作業の課題を解決する手段として,残留強化学習(Residual reinforcement learning, RL)が提案されている。
視覚的インプットから学習するための残差定式化を拡張し,実演を用いて報酬をスパースする。
6-DoFのUR5アームと28-DoFのデキスタラスハンドのシミュレーション操作に関する実験的評価は、デモからの残留RLが、行動クローニングやRL微調整よりも柔軟に、見えない環境条件に一般化できることを実証している。
論文 参考訳(メタデータ) (2021-06-15T11:16:49Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
我々は、フィードバックと非政治学習の両方の長所を生かした、非政治的、インタラクティブな強化学習アルゴリズムを提案する。
提案手法は,従来ヒト・イン・ザ・ループ法で検討されていたよりも複雑度の高いタスクを学習可能であることを実証する。
論文 参考訳(メタデータ) (2021-06-09T14:10:50Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
トレーニングエージェントは通常、報酬機能が必要ですが、報酬は実際にはほとんど利用できず、エンジニアリングは困難で手間がかかります。
限定されたアノテーションから学習し,ラベルなしデータを含む半教師付き学習アルゴリズムを提案する。
シミュレーションロボットアームを用いた実験では,動作のクローン化が大幅に向上し,真理の報奨によって達成される性能に近づいた。
論文 参考訳(メタデータ) (2020-12-12T20:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。