STAR: Synthesis of Tailored Architectures
- URL: http://arxiv.org/abs/2411.17800v1
- Date: Tue, 26 Nov 2024 18:42:42 GMT
- Title: STAR: Synthesis of Tailored Architectures
- Authors: Armin W. Thomas, Rom Parnichkun, Alexander Amini, Stefano Massaroli, Michael Poli,
- Abstract summary: We propose a new approach for the synthesis of tailored architectures (STAR)
Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics.
Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
- Score: 61.080157488857516
- License:
- Abstract: Iterative improvement of model architectures is fundamental to deep learning: Transformers first enabled scaling, and recent advances in model hybridization have pushed the quality-efficiency frontier. However, optimizing architectures remains challenging and expensive. Current automated or manual approaches fall short, largely due to limited progress in the design of search spaces and due to the simplicity of resulting patterns and heuristics. In this work, we propose a new approach for the synthesis of tailored architectures (STAR). Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics. Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
Related papers
- Efficient Language Modeling for Low-Resource Settings with Hybrid RNN-Transformer Architectures [8.442206285783463]
Transformer-based language models have recently been at the forefront of active research in text generation.
These models' advances come at the price of prohibitive training costs, with parameter counts in the billions and compute requirements measured in petaflop/s-decades.
We investigate transformer-based architectures for improving model performance in a low-data regime by selectively replacing attention layers with feed-forward and quasi-recurrent neural network layers.
arXiv Detail & Related papers (2025-02-02T01:05:09Z) - Towards Automated Model Design on Recommender Systems [21.421326082345136]
We introduce a novel paradigm that utilizes weight sharing to explore abundant solution spaces.
From a co-design perspective, we achieve 2x FLOPs efficiency, 1.8x energy efficiency, and 1.5x performance improvements in recommender models.
arXiv Detail & Related papers (2024-11-12T06:03:47Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Advancing Neural Network Performance through Emergence-Promoting Initialization Scheme [0.0]
Emergence in machine learning refers to the spontaneous appearance of capabilities that arise from the scale and structure of training data.
We introduce a novel yet straightforward neural network initialization scheme that aims at achieving greater potential for emergence.
We demonstrate substantial improvements in both model accuracy and training speed, with and without batch normalization.
arXiv Detail & Related papers (2024-07-26T18:56:47Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - Hybrid State Space-based Learning for Sequential Data Prediction with
Joint Optimization [0.0]
We introduce a hybrid model that mitigates, via a joint mechanism, the need for domain-specific feature engineering issues of conventional nonlinear prediction models.
We achieve this by introducing novel state space representations for the base models, which are then combined to provide a full state space representation of the hybrid or the ensemble.
Due to such novel combination and joint optimization, we demonstrate significant improvements in widely publicized real life competition datasets.
arXiv Detail & Related papers (2023-09-19T12:00:28Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
We propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures.
We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS.
Experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks.
arXiv Detail & Related papers (2021-07-15T16:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.