Diffusing the Optimal Topology: A Generative Optimization Approach
- URL: http://arxiv.org/abs/2303.09760v1
- Date: Fri, 17 Mar 2023 03:47:10 GMT
- Title: Diffusing the Optimal Topology: A Generative Optimization Approach
- Authors: Giorgio Giannone, Faez Ahmed
- Abstract summary: Topology optimization seeks to find the best design that satisfies a set of constraints while maximizing system performance.
Traditional iterative optimization methods like SIMP can be computationally expensive and get stuck in local minima.
We propose a Generative Optimization method that integrates classic optimization like SIMP as a refining mechanism for the topology generated by a deep generative model.
- Score: 6.375982344506753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology Optimization seeks to find the best design that satisfies a set of
constraints while maximizing system performance. Traditional iterative
optimization methods like SIMP can be computationally expensive and get stuck
in local minima, limiting their applicability to complex or large-scale
problems. Learning-based approaches have been developed to accelerate the
topology optimization process, but these methods can generate designs with
floating material and low performance when challenged with out-of-distribution
constraint configurations. Recently, deep generative models, such as Generative
Adversarial Networks and Diffusion Models, conditioned on constraints and
physics fields have shown promise, but they require extensive pre-processing
and surrogate models for improving performance. To address these issues, we
propose a Generative Optimization method that integrates classic optimization
like SIMP as a refining mechanism for the topology generated by a deep
generative model. We also remove the need for conditioning on physical fields
using a computationally inexpensive approximation inspired by classic ODE
solutions and reduce the number of steps needed to generate a feasible and
performant topology. Our method allows us to efficiently generate good
topologies and explicitly guide them to regions with high manufacturability and
high performance, without the need for external auxiliary models or additional
labeled data. We believe that our method can lead to significant advancements
in the design and optimization of structures in engineering applications, and
can be applied to a broader spectrum of performance-aware engineering design
problems.
Related papers
- Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - TopoDiff: A Performance and Constraint-Guided Diffusion Model for
Topology Optimization [4.091593765662773]
TopoDiff is a conditional diffusion-model-based architecture for performance-aware and manufacturability-aware topology optimization.
Our method significantly outperforms a state-of-art conditional GAN by reducing the average error on physical performance by a factor of eight.
arXiv Detail & Related papers (2022-08-20T03:26:00Z) - Optimal Design of Electric Machine with Efficient Handling of
Constraints and Surrogate Assistance [5.387300498478744]
This article proposes an optimization method incorporated into a popularly-used evolutionary multi-objective optimization algorithm - NSGA-II.
The proposed method exploits the inexpensiveness of geometric constraints to generate feasible designs by using a custom repair operator.
arXiv Detail & Related papers (2022-06-03T17:13:29Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Speeding up Computational Morphogenesis with Online Neural Synthetic
Gradients [51.42959998304931]
A wide range of modern science and engineering applications are formulated as optimization problems with a system of partial differential equations (PDEs) as constraints.
These PDE-constrained optimization problems are typically solved in a standard discretize-then-optimize approach.
We propose a general framework to speed up PDE-constrained optimization using online neural synthetic gradients (ONSG) with a novel two-scale optimization scheme.
arXiv Detail & Related papers (2021-04-25T22:43:51Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.