Adaptive Client Selection with Personalization for Communication Efficient Federated Learning
- URL: http://arxiv.org/abs/2411.17833v1
- Date: Tue, 26 Nov 2024 19:20:59 GMT
- Title: Adaptive Client Selection with Personalization for Communication Efficient Federated Learning
- Authors: Allan M. de Souza, Filipe Maciel, Joahannes B. D. da Costa, Luiz F. Bittencourt, Eduardo Cerqueira, Antonio A. F. Loureiro, Leandro A. Villas,
- Abstract summary: Federated Learning (FL) is a distributed approach to collaboratively training machine learning models.
This article introduces ACSP-FL, a solution to reduce the overall communication and computation costs for training a model in FL environments.
- Score: 2.8484833657472644
- License:
- Abstract: Federated Learning (FL) is a distributed approach to collaboratively training machine learning models. FL requires a high level of communication between the devices and a central server, thus imposing several challenges, including communication bottlenecks and network scalability. This article introduces ACSP-FL (https://github.com/AllanMSouza/ACSP-FL), a solution to reduce the overall communication and computation costs for training a model in FL environments. ACSP-FL employs a client selection strategy that dynamically adapts the number of devices training the model and the number of rounds required to achieve convergence. Moreover, ACSP-FL enables model personalization to improve clients performance. A use case based on human activity recognition datasets aims to show the impact and benefits of ACSP-FL when compared to state-of-the-art approaches. Experimental evaluations show that ACSP-FL minimizes the overall communication and computation overheads to train a model and converges the system efficiently. In particular, ACSP-FL reduces communication up to 95% compared to literature approaches while providing good convergence even in scenarios where data is distributed differently, non-independent and identical way between client devices.
Related papers
- Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing [7.180235086275924]
Federated Learning is a promising approach for learning from user data while preserving data privacy.
Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training.
This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead.
We propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases.
arXiv Detail & Related papers (2024-01-16T09:34:10Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data at the network edge.
We propose a novel Semi-supervised SFL system, termed SemiSFL, which incorporates clustering regularization to perform SFL with unlabeled and non-IID client data.
Our system provides a 3.8x speed-up in training time, reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.8% improvement in accuracy under non-IID scenarios.
arXiv Detail & Related papers (2023-07-29T02:35:37Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - HiFlash: Communication-Efficient Hierarchical Federated Learning with
Adaptive Staleness Control and Heterogeneity-aware Client-Edge Association [38.99309610943313]
Federated learning (FL) is a promising paradigm that enables collaboratively learning a shared model across massive clients.
For many existing FL systems, clients need to frequently exchange model parameters of large data size with the remote cloud server directly via wide-area networks (WAN)
We resort to the hierarchical federated learning paradigm of HiFL, which reaps the benefits of mobile edge computing.
arXiv Detail & Related papers (2023-01-16T14:39:04Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.