論文の概要: OracleSage: Towards Unified Visual-Linguistic Understanding of Oracle Bone Scripts through Cross-Modal Knowledge Fusion
- arxiv url: http://arxiv.org/abs/2411.17837v1
- Date: Tue, 26 Nov 2024 19:26:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:26:55.704432
- Title: OracleSage: Towards Unified Visual-Linguistic Understanding of Oracle Bone Scripts through Cross-Modal Knowledge Fusion
- Title(参考訳): OracleSage: クロスモーダル知識融合によるOracle Boneスクリプトの統一型視覚言語的理解を目指して
- Authors: Hanqi Jiang, Yi Pan, Junhao Chen, Zhengliang Liu, Yifan Zhou, Peng Shu, Yiwei Li, Huaqin Zhao, Stephen Mihm, Lewis C Howe, Tianming Liu,
- Abstract要約: 中国最古の成熟した書記システムであるOracle bone script (OBS) は、自動認識において重大な課題を提起している。
私たちは、階層的な視覚的理解とグラフベースのセマンティック推論を統合する新しいクロスモーダルフレームワークであるOracleSageを紹介します。
- 参考スコア(独自算出の注目度): 19.788896054132053
- License:
- Abstract: Oracle bone script (OBS), as China's earliest mature writing system, present significant challenges in automatic recognition due to their complex pictographic structures and divergence from modern Chinese characters. We introduce OracleSage, a novel cross-modal framework that integrates hierarchical visual understanding with graph-based semantic reasoning. Specifically, we propose (1) a Hierarchical Visual-Semantic Understanding module that enables multi-granularity feature extraction through progressive fine-tuning of LLaVA's visual backbone, (2) a Graph-based Semantic Reasoning Framework that captures relationships between visual components and semantic concepts through dynamic message passing, and (3) OracleSem, a semantically enriched OBS dataset with comprehensive pictographic and semantic annotations. Experimental results demonstrate that OracleSage significantly outperforms state-of-the-art vision-language models. This research establishes a new paradigm for ancient text interpretation while providing valuable technical support for archaeological studies.
- Abstract(参考訳): 中国最古の成熟した文字体系であるOracle bone script (OBS)は、複雑な画像構造と現代の漢字との相違により、自動認識において重大な課題を呈している。
私たちは、階層的な視覚的理解とグラフベースのセマンティック推論を統合する新しいクロスモーダルフレームワークであるOracleSageを紹介します。
具体的には,(1)LLaVAの視覚的バックボーンの段階的な微調整による多粒度特徴抽出を可能にする階層型視覚意味理解モジュール,(2)動的メッセージパッシングによる視覚的コンポーネントと意味的概念の関係をキャプチャするグラフベースのセマンティック推論フレームワーク,(3)総合的なピクトグラフィとセマンティックアノテーションを備えた意味的にリッチなOBSデータセットであるOracleSemを提案する。
実験の結果、OracleSageは最先端のビジョン言語モデルよりも大幅に優れています。
この研究は、考古学研究に貴重な技術支援を提供しながら、古代のテキスト解釈の新しいパラダイムを確立する。
関連論文リスト
- ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
変換器の高度な特徴抽出機能を備えた大規模言語モデルの非並列的文脈理解を融合したアーキテクチャであるARPAを提案する。
ARPAの導入は、視覚的単語の曖昧さにおいて重要なマイルストーンであり、魅力的なソリューションを提供する。
我々は研究者や実践者たちに、このようなハイブリッドモデルが人工知能の先例のない進歩を後押しする未来を想像して、我々のモデルの能力を探求するよう依頼する。
論文 参考訳(メタデータ) (2024-08-12T10:15:13Z) - Emergent Visual-Semantic Hierarchies in Image-Text Representations [13.300199242824934]
既存の基盤モデルの知識について検討し、視覚・意味的階層の創発的な理解を示すことを明らかにする。
本稿では,階層的理解の探索と最適化を目的としたRadial Embedding (RE)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-11T14:09:42Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridgeは、コンテキストテキスト情報を活用することで、ローカルおよびグローバルな視点をブリッジするフレームワークである。
提案手法は最先端性能を実現し,グラフ対応トークン削減モジュールは効率を大幅に向上し,スケーラビリティの問題を解消する。
論文 参考訳(メタデータ) (2024-06-18T13:35:25Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
マルチモーダル出力を有効にした視覚理解のための新しいICLフレームワークを提案する。
まず、テキストと視覚的プロンプトの両方を量子化し、統一された表現空間に埋め込む。
次にデコーダのみのスパーストランスアーキテクチャを用いて生成モデリングを行う。
論文 参考訳(メタデータ) (2023-12-05T06:02:21Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream)は、Large Language Models (LLM)の言語画像理解能力を高めるために設計された、新しいニューラルネットワークである。
我々のアプローチは、視覚と言語理解のギャップを埋め、より洗練されたドキュメントインテリジェンスアシスタントの開発の道を開く。
論文 参考訳(メタデータ) (2023-05-24T11:59:13Z) - Jointly Visual- and Semantic-Aware Graph Memory Networks for Temporal
Sentence Localization in Videos [67.12603318660689]
階層型ビジュアル・セマンティック・アウェア推論ネットワーク(HVSARN)を提案する。
HVSARNは、オブジェクトレベルからフレームレベルへの視覚的および意味論的クエリ推論を可能にする。
3つのデータセットの実験では、HVSARNが新しい最先端のパフォーマンスを達成することが示されています。
論文 参考訳(メタデータ) (2023-03-02T08:00:22Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。