Basic Research, Lethal Effects: Military AI Research Funding as Enlistment
- URL: http://arxiv.org/abs/2411.17840v1
- Date: Tue, 26 Nov 2024 19:29:27 GMT
- Title: Basic Research, Lethal Effects: Military AI Research Funding as Enlistment
- Authors: David Gray Widder, Sireesh Gururaja, Lucy Suchman,
- Abstract summary: We draw from a corpus of DoD grant solicitations from 2007 to 2023, focusing on those addressed to researchers in the field of artificial intelligence (AI)
We offer a critical examination of the distinction between basic and applied research, showing how funding calls framed as basic research nonetheless enlist researchers in a war fighting agenda.
We argue that grant solicitations work as a vehicle for the mutual enlistment of DoD funding agencies and the academic AI research community in setting research agendas.
- Score: 1.77513002450736
- License:
- Abstract: In the context of unprecedented U.S. Department of Defense (DoD) budgets, this paper examines the recent history of DoD funding for academic research in algorithmically based warfighting. We draw from a corpus of DoD grant solicitations from 2007 to 2023, focusing on those addressed to researchers in the field of artificial intelligence (AI). Considering the implications of DoD funding for academic research, the paper proceeds through three analytic sections. In the first, we offer a critical examination of the distinction between basic and applied research, showing how funding calls framed as basic research nonetheless enlist researchers in a war fighting agenda. In the second, we offer a diachronic analysis of the corpus, showing how a 'one small problem' caveat, in which affirmation of progress in military technologies is qualified by acknowledgement of outstanding problems, becomes justification for additional investments in research. We close with an analysis of DoD aspirations based on a subset of Defense Advanced Research Projects Agency (DARPA) grant solicitations for the use of AI in battlefield applications. Taken together, we argue that grant solicitations work as a vehicle for the mutual enlistment of DoD funding agencies and the academic AI research community in setting research agendas. The trope of basic research in this context offers shelter from significant moral questions that military applications of one's research would raise, by obscuring the connections that implicate researchers in U.S. militarism.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations.
This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures.
arXiv Detail & Related papers (2024-03-31T12:44:48Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
Some researchers fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal.
We propose that major AI developers commit to providing a legal and technical safe harbor.
We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
arXiv Detail & Related papers (2024-03-07T20:55:08Z) - Improving the State of the Art for Training Human-AI Teams: Technical
Report #2 -- Results of Researcher Knowledge Elicitation Survey [0.0]
Sonalysts has begun an internal initiative to explore the training of Human-AI teams.
The first step in this effort is to develop a Synthetic Task Environment (STE) that is capable of facilitating research on Human-AI teams.
arXiv Detail & Related papers (2023-08-29T13:54:32Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Analyse der Entwicklungstreiber milit\"arischer Schwarmdrohnen durch
Natural Language Processing [0.0]
Military drones are taking an increasingly prominent role in armed conflict, and the use of multiple drones in a swarm can be useful.
Who the drivers of the research are and what sub-domains exist is analyzed and visually presented in this research using NLP techniques based on 946 studies.
Overall, 2019 and 2020 saw the most works published, with significant interest in military swarm drones as early as 2008.
arXiv Detail & Related papers (2022-11-15T20:22:33Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Ethics and Governance of Artificial Intelligence: Evidence from a Survey
of Machine Learning Researchers [0.0]
Machine learning (ML) and artificial intelligence (AI) researchers play an important role in the ethics and governance of AI.
We conducted a survey of those who published in the top AI/ML conferences.
We find that AI/ML researchers place high levels of trust in international organizations and scientific organizations.
arXiv Detail & Related papers (2021-05-05T15:23:12Z) - A narrowing of AI research? [0.0]
We study the evolution of the thematic diversity of AI research in academia and the private sector.
We measure the influence of private companies in AI research through the citations they receive and their collaborations with other institutions.
arXiv Detail & Related papers (2020-09-22T08:23:56Z) - Fine-grained Financial Opinion Mining: A Survey and Research Agenda [50.27357144360525]
We first define the financial opinions from both coarse-grained and fine-grained points of views, and then provide an overview on the issues already tackled.
We propose a road map of fine-grained financial opinion mining for future researches, and point out several challenges yet to explore.
arXiv Detail & Related papers (2020-05-05T01:07:07Z) - The Offense-Defense Balance of Scientific Knowledge: Does Publishing AI
Research Reduce Misuse? [0.0]
There is growing concern over the potential misuse of artificial intelligence (AI) research.
Publishing scientific research can facilitate misuse of the technology, but the research can also contribute to protections against misuse.
This paper addresses the balance between these two effects.
arXiv Detail & Related papers (2019-12-27T10:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.