Optimization-Free Image Immunization Against Diffusion-Based Editing
- URL: http://arxiv.org/abs/2411.17957v1
- Date: Wed, 27 Nov 2024 00:30:26 GMT
- Title: Optimization-Free Image Immunization Against Diffusion-Based Editing
- Authors: Tarik Can Ozden, Ozgur Kara, Oguzhan Akcin, Kerem Zaman, Shashank Srivastava, Sandeep P. Chinchali, James M. Rehg,
- Abstract summary: DiffVax is a scalable, lightweight, and optimization-free framework for image immunization.
Our approach enables effective generalization to unseen content, reducing computational costs and cutting immunization time from days to milliseconds.
- Score: 23.787546784989484
- License:
- Abstract: Current image immunization defense techniques against diffusion-based editing embed imperceptible noise in target images to disrupt editing models. However, these methods face scalability challenges, as they require time-consuming re-optimization for each image-taking hours for small batches. To address these challenges, we introduce DiffVax, a scalable, lightweight, and optimization-free framework for image immunization, specifically designed to prevent diffusion-based editing. Our approach enables effective generalization to unseen content, reducing computational costs and cutting immunization time from days to milliseconds-achieving a 250,000x speedup. This is achieved through a loss term that ensures the failure of editing attempts and the imperceptibility of the perturbations. Extensive qualitative and quantitative results demonstrate that our model is scalable, optimization-free, adaptable to various diffusion-based editing tools, robust against counter-attacks, and, for the first time, effectively protects video content from editing. Our code is provided in our project webpage.
Related papers
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuard is a robust and effective defense method against unauthorized edits by diffusion-based image editing models.
We introduce a novel objective that generates adversarial noise targeting the early stage of the diffusion process.
We also introduce a mask-augmentation technique to enhance robustness against various masks during test time.
arXiv Detail & Related papers (2024-10-08T05:19:19Z) - PostEdit: Posterior Sampling for Efficient Zero-Shot Image Editing [63.38854614997581]
We introduce PostEdit, a method that incorporates a posterior scheme to govern the diffusion sampling process.
The proposed PostEdit achieves state-of-the-art editing performance while accurately preserving unedited regions.
The method is both inversion- and training-free, necessitating approximately 1.5 seconds and 18 GB of GPU memory to generate high-quality results.
arXiv Detail & Related papers (2024-10-07T09:04:50Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
This study proposes a novel paradigm of video-based score distillation, facilitating direct manipulation of original video content.
We propose an Adaptive Sliding Score Distillation strategy, which incorporates both global and local video guidance to reduce the impact of editing errors.
arXiv Detail & Related papers (2024-06-07T12:33:59Z) - The Curious Case of End Token: A Zero-Shot Disentangled Image Editing using CLIP [4.710921988115686]
We show that CLIP is capable of performing disentangled editing in a zero-shot manner.
This insight may open opportunities for applying this method to various tasks, including image and video editing.
arXiv Detail & Related papers (2024-06-01T14:46:57Z) - LASPA: Latent Spatial Alignment for Fast Training-free Single Image Editing [43.20273464866661]
We present a training-free approach for textual editing of real images using diffusion models.
We demonstrate how the diffusion process is amenable to spatial guidance using a reference image, leading to semantically coherent edits.
Our method achieves 62-71% preference in a user-study and significantly better model-based editing strength and image preservation scores.
arXiv Detail & Related papers (2024-03-19T09:47:08Z) - FastVideoEdit: Leveraging Consistency Models for Efficient Text-to-Video Editing [8.907836546058086]
Existing approaches relying on image generation models for video editing suffer from time-consuming one-shot fine-tuning, additional condition extraction, or DDIM inversion.
We propose FastVideoEdit, an efficient zero-shot video editing approach inspired by Consistency Models (CMs)
Our method enables direct mapping from source video to target video with strong preservation ability utilizing a special variance schedule.
arXiv Detail & Related papers (2024-03-10T17:12:01Z) - Object-Centric Diffusion for Efficient Video Editing [64.71639719352636]
Diffusion-based video editing has reached impressive quality.
Such solutions typically incur heavy memory and computational costs to generate temporally-coherent frames.
We propose modifications that allow significant speed-ups whilst maintaining quality.
arXiv Detail & Related papers (2024-01-11T08:36:15Z) - Raising the Cost of Malicious AI-Powered Image Editing [82.71990330465115]
We present an approach to mitigating the risks of malicious image editing posed by large diffusion models.
The key idea is to immunize images so as to make them resistant to manipulation by these models.
arXiv Detail & Related papers (2023-02-13T18:38:42Z) - Blended Latent Diffusion [18.043090347648157]
We present an accelerated solution to the task of local text-driven editing of generic images, where the desired edits are confined to a user-provided mask.
Our solution leverages a recent text-to-image Latent Diffusion Model (LDM), which speeds up diffusion by operating in a lower-dimensional latent space.
arXiv Detail & Related papers (2022-06-06T17:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.