論文の概要: AI-Driven Smartphone Solution for Digitizing Rapid Diagnostic Test Kits and Enhancing Accessibility for the Visually Impaired
- arxiv url: http://arxiv.org/abs/2411.18007v1
- Date: Wed, 27 Nov 2024 02:53:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:26:50.352160
- Title: AI-Driven Smartphone Solution for Digitizing Rapid Diagnostic Test Kits and Enhancing Accessibility for the Visually Impaired
- Title(参考訳): 迅速診断キットのデジタル化と視覚障害者のアクセシビリティ向上のためのAI駆動型スマートフォンソリューション
- Authors: R. B. Dastagir, J. T. Jami, S. Chanda, F. Hafiz, M. Rahman, K. Dey, M. M. Rahman, M. Qureshi, M. M. Chowdhury,
- Abstract要約: 本稿では,迅速診断結果解釈の精度と信頼性を高めるための新しい手法を提案する。
このアプリは、ユーザーがテストキットの写真を撮り、YOLOv8が処理して膜領域を正確に抽出する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Rapid diagnostic tests are crucial for timely disease detection and management, yet accurate interpretation of test results remains challenging. In this study, we propose a novel approach to enhance the accuracy and reliability of rapid diagnostic test result interpretation by integrating artificial intelligence (AI) algorithms, including convolutional neural networks (CNN), within a smartphone-based application. The app enables users to take pictures of their test kits, which YOLOv8 then processes to precisely crop and extract the membrane region, even if the test kit is not centered in the frame or is positioned at the very edge of the image. This capability offers greater accessibility, allowing even visually impaired individuals to capture test images without needing perfect alignment, thus promoting user independence and inclusivity. The extracted image is analyzed by an additional CNN classifier that determines if the results are positive, negative, or invalid, providing users with the results and a confidence level. Through validation experiments with commonly used rapid test kits across various diagnostic applications, our results demonstrate that the synergistic integration of AI significantly improves sensitivity and specificity in test result interpretation. This improvement can be attributed to the extraction of the membrane zones from the test kit images using the state-of-the-art YOLO algorithm. Additionally, we performed SHapley Additive exPlanations (SHAP) analysis to investigate the factors influencing the model's decisions, identifying reasons behind both correct and incorrect classifications. By facilitating the differentiation of genuine test lines from background noise and providing valuable insights into test line intensity and uniformity, our approach offers a robust solution to challenges in rapid test interpretation.
- Abstract(参考訳): 迅速診断検査は、タイムリーな疾患の検出と管理には不可欠であるが、検査結果の正確な解釈は依然として困難である。
本研究では,スマートフォンベースのアプリケーションにおいて,畳み込みニューラルネットワーク(CNN)を含む人工知能(AI)アルゴリズムを統合することにより,迅速な診断結果解釈の精度と信頼性を高める手法を提案する。
このアプリはテストキットの写真を撮影でき、YOLOv8は、テストキットがフレームに集中していない場合や、画像の端に位置する場合であっても、正確に膜領域を抽出する。
この能力により、よりアクセシビリティが向上し、視覚障害者でさえ、完全なアライメントを必要とせずに、テストイメージをキャプチャできる。
抽出した画像は追加のCNN分類器で分析され、結果が正か負か無効かを判定し、ユーザに結果と信頼度を与える。
その結果,AIの相乗的統合がテスト結果解釈の感度と特異性を大幅に向上させることが実証された。
この改善は、最先端のYOLOアルゴリズムを用いてテストキット画像から膜ゾーンを抽出することに起因する。
さらに,モデル決定に影響を及ぼす要因を調べるため,SHAP分析を行い,正しい分類と誤分類の両方の背後にある理由を特定した。
バックグラウンドノイズからの真のテストラインの識別を容易にし、テストラインの強度と均一性に関する貴重な洞察を提供することで、我々のアプローチは、迅速なテスト解釈における課題に対する堅牢な解決策を提供する。
関連論文リスト
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
医用イメージングに適した説明可能なAI手法を開発した。
我々は、画像領域と周波数領域の両方にわたるMRIスキャンを分析する畳み込みニューラルネットワーク(CNN)を採用している。
このアプローチは、初期のトレーニング効率を高めるだけでなく、追加機能がモデル予測にどのように影響するかの理解を深めます。
論文 参考訳(メタデータ) (2024-09-20T15:43:26Z) - mmID: High-Resolution mmWave Imaging for Human Identification [16.01613518230451]
本稿では,条件付き生成逆数ネットワーク(cGAN)を用いて人体全体を推定することで画像分解能を向上させることを提案する。
本システムは,人間の識別に有用な特徴を抽出できる,環境に依存しない高解像度画像を生成する。
その結果,Kinectデバイスに5%のシルエット差が認められた。
論文 参考訳(メタデータ) (2024-02-01T20:19:38Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
深層学習は高い予測精度と不確実性推定を実現することが示されている。
テスト時の入力画像のゆがみは、パフォーマンスを著しく低下させる可能性がある。
LaDiNEは,入力画像から情報および不変潜伏変数を推定できる,新規で堅牢な確率的手法である。
論文 参考訳(メタデータ) (2023-10-24T15:53:07Z) - Robustness Stress Testing in Medical Image Classification [26.094688963784254]
我々はストレステストを用いて、疾患検出モデルにおけるモデルロバスト性およびサブグループパフォーマンスの相違を評価する。
胸部X線画像と皮膚病変画像に対する疾患検出モデルのロバスト性の測定にストレステストを適用した。
我々の実験は、いくつかのモデルが他のモデルよりもより堅牢で公平な性能が得られることを示唆している。
論文 参考訳(メタデータ) (2023-08-14T02:02:56Z) - D-Score: A White-Box Diagnosis Score for CNNs Based on Mutation
Operators [8.977819892091]
畳み込みニューラルネットワーク(CNN)は、自律運転や診断など、多くの安全クリティカルな領域に広く応用されている。
そこで本研究では,変異演算子と画像変換を用いたホワイトボックス診断手法を提案する。
また,D-Scoreに基づくデータ拡張手法を提案し,CNNの性能を翻訳や再スケーリングに拡張する。
論文 参考訳(メタデータ) (2023-04-03T03:13:59Z) - Zero-shot Model Diagnosis [80.36063332820568]
ディープラーニングモデルを評価するための一般的なアプローチは、興味のある属性を持つラベル付きテストセットを構築し、そのパフォーマンスを評価することである。
本稿では,ゼロショットモデル診断(ZOOM)がテストセットやラベル付けを必要とせずに可能であることを論じる。
論文 参考訳(メタデータ) (2023-03-27T17:59:33Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
病気の感染頻度が低い場合、Dorfman氏は80年前に、人のテストグループは個人でテストするよりも効率が良いことを示した。
本研究の目的は,ノイズの多い環境で動作可能な新しいグループテストアルゴリズムを提案することである。
論文 参考訳(メタデータ) (2020-04-26T23:41:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。