Using Machine Bias To Measure Human Bias
- URL: http://arxiv.org/abs/2411.18122v4
- Date: Tue, 10 Dec 2024 09:13:39 GMT
- Title: Using Machine Bias To Measure Human Bias
- Authors: Wanxue Dong, Maria De-Arteaga, Maytal Saar-Tsechansky,
- Abstract summary: We propose a machine learning-based framework to assess bias in human-generated decisions.
We provide theoretical guarantees and empirical evidence demonstrating the superiority of our method over existing alternatives.
- Score: 10.983607899068204
- License:
- Abstract: Biased human decisions have consequential impacts across various domains, yielding unfair treatment of individuals and resulting in suboptimal outcomes for organizations and society. In recognition of this fact, organizations regularly design and deploy interventions aimed at mitigating these biases. However, measuring human decision biases remains an important but elusive task. Organizations are frequently concerned with mistaken decisions disproportionately affecting one group. In practice, however, this is typically not possible to assess due to the scarcity of a gold standard: a label that indicates what the correct decision would have been. In this work, we propose a machine learning-based framework to assess bias in human-generated decisions when gold standard labels are scarce. We provide theoretical guarantees and empirical evidence demonstrating the superiority of our method over existing alternatives. This proposed methodology establishes a foundation for transparency in human decision-making, carrying substantial implications for managerial duties, and offering potential for alleviating algorithmic biases when human decisions are used as labels to train algorithms.
Related papers
- (Un)certainty of (Un)fairness: Preference-Based Selection of Certainly Fair Decision-Makers [0.0]
Fairness metrics are used to assess discrimination and bias in decision-making processes across various domains.
We quantify the uncertainty of the disparity to enhance discrimination assessments.
We define preferences over decision-makers and utilize brute-force to choose the optimal decision-maker.
arXiv Detail & Related papers (2024-09-19T11:44:03Z) - Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies [0.43981305860983716]
We show how to compare the performance of three alternative decision-making systems--human-alone, human-with-AI, and AI-alone.
We find that the risk assessment recommendations do not improve the classification accuracy of a judge's decision to impose cash bail.
arXiv Detail & Related papers (2024-03-18T01:04:52Z) - Decision Theoretic Foundations for Experiments Evaluating Human Decisions [18.27590643693167]
We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the utility-maximizing decision.
As a demonstration, we evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve these criteria.
arXiv Detail & Related papers (2024-01-25T16:21:37Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Randomized Classifiers vs Human Decision-Makers: Trustworthy AI May Have
to Act Randomly and Society Seems to Accept This [0.8889304968879161]
We feel that akin to human decisions, judgments of artificial agents should necessarily be grounded in some moral principles.
Yet a decision-maker can only make truly ethical (based on any ethical theory) and fair (according to any notion of fairness) decisions if full information on all the relevant factors on which the decision is based are available at the time of decision-making.
arXiv Detail & Related papers (2021-11-15T05:39:02Z) - A Ranking Approach to Fair Classification [11.35838396538348]
Algorithmic decision systems are increasingly used in areas such as hiring, school admission, or loan approval.
In many scenarios, ground-truth labels are unavailable, and instead we have only access to imperfect labels as the result of human-made decisions.
We propose a new fair ranking-based decision system, as an alternative to traditional classification algorithms.
arXiv Detail & Related papers (2021-02-08T22:51:12Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Indecision Modeling [50.00689136829134]
It is important that AI systems act in ways which align with human values.
People are often indecisive, and especially so when their decision has moral implications.
arXiv Detail & Related papers (2020-12-15T18:32:37Z) - A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores [85.12096045419686]
We study the adoption of an algorithmic tool used to assist child maltreatment hotline screening decisions.
We first show that humans do alter their behavior when the tool is deployed.
We show that humans are less likely to adhere to the machine's recommendation when the score displayed is an incorrect estimate of risk.
arXiv Detail & Related papers (2020-02-19T07:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.