論文の概要: SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment
- arxiv url: http://arxiv.org/abs/2411.18162v1
- Date: Wed, 27 Nov 2024 09:18:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:15.851855
- Title: SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment
- Title(参考訳): SentiXRL:複合テキスト環境における多言語細粒度感情分類のための高度な大規模言語モデルフレームワーク
- Authors: Jie Wang, Yichen Wang, Zhilin Zhang, Jianhao Zeng, Kaidi Wang, Zhiyang Chen,
- Abstract要約: 我々はSentiment Cross-Lingual Recognition and Logic Framework (SentiXRL)を提案する。
SentiXRLには2つのモジュールがあり、感情検索拡張モジュールは、歴史的対話と論理的推論を通じて複雑な文脈における感情分類の精度を向上させる。
我々は、複数の標準データセット上でSentiXRLの優位性を検証し、CPEDおよびCH-SIMSの既存モデルよりも優れており、MELD、Emorynlp、IEMOCAPの全体的な性能向上を実現している。
- 参考スコア(独自算出の注目度): 9.952187981270326
- License:
- Abstract: With strong expressive capabilities in Large Language Models(LLMs), generative models effectively capture sentiment structures and deep semantics, however, challenges remain in fine-grained sentiment classification across multi-lingual and complex contexts. To address this, we propose the Sentiment Cross-Lingual Recognition and Logic Framework (SentiXRL), which incorporates two modules,an emotion retrieval enhancement module to improve sentiment classification accuracy in complex contexts through historical dialogue and logical reasoning,and a self-circulating analysis negotiation mechanism (SANM)to facilitates autonomous decision-making within a single model for classification tasks.We have validated SentiXRL's superiority on multiple standard datasets, outperforming existing models on CPED and CH-SIMS,and achieving overall better performance on MELD,Emorynlp and IEMOCAP. Notably, we unified labels across several fine-grained sentiment annotation datasets and conducted category confusion experiments, revealing challenges and impacts of class imbalance in standard datasets.
- Abstract(参考訳): LLM(Large Language Models)の強力な表現能力により、生成モデルは感情構造や深い意味を効果的に捉えることができるが、しかしながら、多言語および複雑な文脈における微粒な感情分類には課題が残っている。
これを解決するために,2つのモジュールを組み込んだSentiment Cross-Lingual Recognition and Logic Framework (SentiXRL) を提案する。2つのモジュールは,過去の対話や論理的推論を通じて複雑な文脈における感情分類の精度を向上させるための感情検索拡張モジュールと,単一のモデル内での自律的な意思決定を容易にする自己循環分析ネゴシエーション機構 (SANM) を備えている。我々は,SentiXRLが複数の標準データセット上で優位であることを検証するとともに,CPEDやCH-SIMSの既存モデルよりも優れており,MELD,Emorynlp,IEMOCAPの全体的な性能向上を実現している。
特に、いくつかの微粒な感情アノテーションデータセットにラベルを統一し、カテゴリー混乱実験を行い、標準データセットにおけるクラス不均衡の課題と影響を明らかにした。
関連論文リスト
- Combining Autoregressive and Autoencoder Language Models for Text Classification [1.0878040851638]
CAALM-TCは、自動回帰言語モデルと自動エンコーダ言語モデルを統合することで、テキスト分類を強化する新しい手法である。
4つのベンチマークデータセットの実験結果は、CAALMが既存の手法より一貫して優れていることを示している。
論文 参考訳(メタデータ) (2024-11-20T12:49:42Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings [5.257719744958367]
この論文は、事前学習された言語モデル(PLM)の本質的な知識を活用することによって、テキスト分類における3つの挑戦的な設定を探求する。
本研究では, PLMの文脈表現に基づく特徴量を利用したモデルを構築し, 人間の精度に匹敵する, あるいは超越する性能を実現する。
最後に、実効的な実演を選択することで、大規模言語モデルの文脈内学習プロンプトに対する感受性に取り組む。
論文 参考訳(メタデータ) (2024-08-28T09:07:30Z) - SER Evals: In-domain and Out-of-domain Benchmarking for Speech Emotion Recognition [3.4355593397388597]
音声感情認識(SER)は、強力な自己教師付き学習(SSL)モデルの出現に大きく貢献している。
本稿では,最先端SERモデルの堅牢性と適応性を評価するための大規模ベンチマークを提案する。
主に音声認識用に設計されたWhisperモデルは,言語横断SERにおいて,専用SSLモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-08-14T23:33:10Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - SSLCL: An Efficient Model-Agnostic Supervised Contrastive Learning
Framework for Emotion Recognition in Conversations [20.856739541819056]
会話における感情認識(ERC)は、自然言語処理コミュニティの中で急速に進化している課題である。
We propose a efficient and model-agnostic SCL framework named Supervised Sample-Label Contrastive Learning with Soft-HGR Maximal correlation (SSLCL)。
浅い多層パーセプトロンを通して、離散ラベルを密度の高い埋め込みに投影することで、ラベル表現を活用する新しい視点を導入する。
論文 参考訳(メタデータ) (2023-10-25T14:41:14Z) - InstructERC: Reforming Emotion Recognition in Conversation with Multi-task Retrieval-Augmented Large Language Models [9.611864685207056]
本稿では,識別的枠組みから大規模言語モデル(LLM)に基づく生成的枠組みへ,感情認識タスクを再構築するための新しいアプローチであるインストラクタCを提案する。
InstructERCは、3つの重要な貢献をしている:(1)モデルがマルチグラニュラリティ対話監視情報を明示的に統合するのに役立つ単純で効果的なテンプレートモジュール、(2)話者識別と感情予測タスクという2つの追加の感情アライメントタスクを導入し、会話における対話の役割の関係と将来の感情傾向を暗黙的にモデル化する。
論文 参考訳(メタデータ) (2023-09-21T09:22:07Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
タスク指向コンポジションセマンティックパーシング(TCSP)は複雑なネストされたユーザクエリを処理する。
本報告では,TCSPの変換可能なクロスランガルとクロスドメインを比較した。
本稿では,フラット化意図とスロット表現を別々に予測し,両方の予測タスクをシーケンスラベリング問題にキャストすることを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:40:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。