論文の概要: Enhancing Computer Vision with Knowledge: a Rummikub Case Study
- arxiv url: http://arxiv.org/abs/2411.18172v1
- Date: Wed, 27 Nov 2024 09:36:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:32.704520
- Title: Enhancing Computer Vision with Knowledge: a Rummikub Case Study
- Title(参考訳): 知識によるコンピュータビジョンの強化:ラミクブの事例研究
- Authors: Simon Vandevelde, Laurent Mertens, Sverre Lauwers, Joost Vennekens,
- Abstract要約: 本稿では,人気ボードゲーム「Rummikub」の解法について評価する。
この特別な例では、追加されたバックグラウンド知識はデータセットの3分の2ほどの価値があり、トレーニング時間を元の時間の半分に短縮することができることを実証しています。
- 参考スコア(独自算出の注目度): 8.265695827745171
- License:
- Abstract: Artificial Neural Networks excel at identifying individual components in an image. However, out-of-the-box, they do not manage to correctly integrate and interpret these components as a whole. One way to alleviate this weakness is to expand the network with explicit knowledge and a separate reasoning component. In this paper, we evaluate an approach to this end, applied to the solving of the popular board game Rummikub. We demonstrate that, for this particular example, the added background knowledge is equally valuable as two-thirds of the data set, and allows to bring down the training time to half the original time.
- Abstract(参考訳): 人工ニューラルネットワークは、画像内の個々のコンポーネントを特定するのに優れている。
しかし、アウト・オブ・ザ・ボックスでは、これらのコンポーネント全体を正しく統合し、解釈することはできません。
この弱点を軽減する1つの方法は、明示的な知識と別個の推論コンポーネントでネットワークを拡張することである。
本稿では,一般的なボードゲームRummikubの解法に適用した,この目的に対するアプローチを評価する。
この特別な例では、追加されたバックグラウンド知識はデータセットの3分の2ほどの価値があり、トレーニング時間を元の時間の半分に短縮することができることを実証しています。
関連論文リスト
- Mitigating the Effect of Incidental Correlations on Part-based Learning [50.682498099720114]
部分ベースの表現は、より解釈可能で、限られたデータでより一般化できる。
パートベース表現のための2つの革新的な正規化手法を提案する。
我々は、ベンチマークデータセット上の数ショットの学習タスクに対して、最先端(SoTA)パフォーマンスを示す。
論文 参考訳(メタデータ) (2023-09-30T13:44:48Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
異なる分布間の知識蒸留という新しい手法を提案する(KD$3$)。
まず,教師ネットワークと学生ネットワークの併用予測に基づいて,Webで収集したデータから有用なトレーニングインスタンスを動的に選択する。
また、MixDistributionと呼ばれる新しいコントラスト学習ブロックを構築して、新しい分散のインスタンスアライメントで摂動データを生成します。
論文 参考訳(メタデータ) (2023-07-21T10:08:58Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
本稿では,特徴集合をグラフノードとして表現し,それらの関係を学習可能なエッジとして表現することで,特徴集合の依存関係を学習するデータ駆動型アプローチを提案する。
また,複数のビューから情報を動的に集約するために,より小さな潜在グラフを学習する新しい階層グラフオートエンコーダLEGATOを導入する。
論文 参考訳(メタデータ) (2023-05-31T10:36:10Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Towards a Unified View of Affinity-Based Knowledge Distillation [5.482532589225552]
我々は知識蒸留を3つの構成要素、すなわち親和性、正規化、損失の枠組みにモジュール化する。
我々は, 単純さにもかかわらず, 関係性に基づく知識蒸留が, 最先端技術に匹敵する性能を達成できることを示す。
論文 参考訳(メタデータ) (2022-09-30T16:12:25Z) - Combining Commonsense Reasoning and Knowledge Acquisition to Guide Deep
Learning in Robotics [8.566457170664926]
本稿では,認知システムの研究からインスピレーションを得たアーキテクチャについて述べる。
ディープネットワークモデルは、ロボット工学とAIにおける多くのパターン認識と意思決定タスクに使用されている。
我々のアーキテクチャは意思決定の信頼性を改善し、データ駆動のディープネットワークモデルのトレーニングに関わる労力を削減する。
論文 参考訳(メタデータ) (2022-01-25T12:24:22Z) - Distilling Holistic Knowledge with Graph Neural Networks [37.86539695906857]
知識蒸留(KD)は、より大規模な教師ネットワークからより小さな学習可能な学生ネットワークへ知識を伝達することを目的としている。
既存のKD法は主に、個々の知識と関係知識の2つの種類の知識を考察してきた。
本稿では, インスタンス間に構築された属性グラフに基づいて, 新たな包括的知識を蒸留する。
論文 参考訳(メタデータ) (2021-08-12T02:47:59Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - Informed Machine Learning for Improved Similarity Assessment in
Process-Oriented Case-Based Reasoning [1.370633147306388]
グラフニューラルネットワーク(GNN)にドメイン知識を統合する可能性について検討する。
まず、各グラフノードとエッジのセマンティックアノテーションに関する構造知識を符号化する特殊なデータ表現処理手法を用いる。
第2に、GNNのメッセージパッシングコンポーネントは、法的なノードマッピングに関する知識によって制約される。
論文 参考訳(メタデータ) (2021-06-30T09:31:58Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Exploiting Contextual Information with Deep Neural Networks [5.787117733071416]
文脈情報は、暗黙的かつ明示的な2つの根本的に異なる方法で活用できることを示します。
この論文では、文脈情報を2つの根本的に異なる方法で活用できることを示し、暗黙的かつ明示的に示す。
論文 参考訳(メタデータ) (2020-06-21T03:40:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。