SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought
- URL: http://arxiv.org/abs/2411.18212v1
- Date: Wed, 27 Nov 2024 10:45:49 GMT
- Title: SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought
- Authors: Aladin Djuhera, Vlad C. Andrei, Amin Seffo, Holger Boche, Walid Saad,
- Abstract summary: A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.
To this end, insights from a digital twin with real-world wireless ray tracing data are explored.
Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
- Score: 78.53885607559958
- License:
- Abstract: Path planning is a complex problem for many practical applications, particularly in robotics. Existing algorithms, however, are exhaustive in nature and become increasingly complex when additional side constraints are incorporated alongside distance minimization. In this paper, a novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments. To this end, insights from a digital twin (DT) with real-world wireless ray tracing data are explored in order to guarantee an average path gain threshold while minimizing the trajectory length. First, traditional approaches such as A* are compared to several wireless-aware extensions, and an optimal iterative dynamic programming approach (DP-WA*) is derived, which fully takes into account all path gains and distance metrics within the DT. On the basis of these baselines, the role of VLMs as an alternative assistant for path planning is investigated, and a strategic chain-of-thought tasking (SCoTT) approach is proposed. SCoTT divides the complex planning task into several subproblems and solves each with advanced CoT prompting. Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths. The results also show that VLMs can be used to accelerate DP-WA* by efficiently reducing the algorithm's search space and thus saving up to 62\% in execution time. This work underscores the potential of VLMs in future digital systems as capable assistants for solving complex tasks, while enhancing user interaction and accelerating rapid prototyping under diverse wireless constraints.
Related papers
- A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.
Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.
We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.
This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - Vertex-based Networks to Accelerate Path Planning Algorithms [3.684936338492373]
We propose the utilization of vertices-based networks to enhance the sampling process of RRT*, leading to more efficient path planning.
We employ focal loss to address the associated data imbalance issue, and explore different masking configurations to determine practical tradeoffs in system performance.
arXiv Detail & Related papers (2023-07-13T20:56:46Z) - Deep Reinforcement Learning for Trajectory Path Planning and Distributed
Inference in Resource-Constrained UAV Swarms [6.649753747542209]
This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm.
The formulated problem is NP-hard so finding the optimal solution is quite complex.
We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
arXiv Detail & Related papers (2022-12-21T17:16:42Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex.
Current sampling-based methods such as Rapidly Exploring Random Trees (RRTs) are not ideal for this problem because of the high computational cost.
We propose a Hierarchical Reinforcement Learning structure combined with a Proportional-Integral-Derivative (PID) controller for trajectory planning.
arXiv Detail & Related papers (2020-11-09T20:49:54Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
We propose a multi-agent reinforcement learning (MARL) approach that can adapt to profound changes in the scenario parameters defining the data harvesting mission.
We show that our proposed network architecture enables the agents to cooperate effectively by carefully dividing the data collection task among themselves.
arXiv Detail & Related papers (2020-10-23T14:59:30Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
We show that the Curious Sample Planner can efficiently discover temporally-extended plans for solving a wide range of physically realistic 3D tasks.
In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples.
arXiv Detail & Related papers (2020-04-22T21:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.