論文の概要: How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario
- arxiv url: http://arxiv.org/abs/2411.18217v2
- Date: Sun, 05 Jan 2025 13:07:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:02:35.236260
- Title: How to Learn a New Language? An Efficient Solution for Self-Supervised Learning Models Unseen Languages Adaption in Low-Resource Scenario
- Title(参考訳): 新しい言語を学ぶには? 低リソースシナリオにおける自己監督型学習モデルの適応性
- Authors: Shih-Heng Wang, Zih-Ching Chen, Jiatong Shi, Ming-To Chuang, Guan-Ting Lin, Kuan-Po Huang, David Harwath, Shang-Wen Li, Hung-yi Lee,
- Abstract要約: 音声認識(ASR)における音声自己監視学習(SSL)モデルの性能向上
低リソース言語 ASR では、事前訓練された言語と低リソース言語のドメインミスマッチ問題に遭遇する。
これらの問題に対処するためのアダプタに基づく従来型の効率的な微調整手法を拡張した。
- 参考スコア(独自算出の注目度): 72.02391485962127
- License:
- Abstract: The utilization of speech Self-Supervised Learning (SSL) models achieves impressive performance on Automatic Speech Recognition (ASR). However, in low-resource language ASR, they encounter the domain mismatch problem between pre-trained and low-resource languages. Typical solutions like fine-tuning the SSL model suffer from high computation costs while using frozen SSL models as feature extractors comes with poor performance. To handle these issues, we extend a conventional efficient fine-tuning scheme based on the adapter. We add an extra intermediate adaptation to warm up the adapter and downstream model initialization. Remarkably, we update only 1-5% of the total model parameters to achieve the adaptation. Experimental results on the ML-SUPERB dataset show that our solution outperforms conventional efficient fine-tuning. It achieves up to a 28% relative improvement in the Character/Phoneme error rate when adapting to unseen languages.
- Abstract(参考訳): 自己教師付き学習(SSL)モデルの利用は,音声認識(ASR)における印象的な性能を達成する。
しかし、低リソース言語 ASR では、事前訓練された言語と低リソース言語の間のドメインミスマッチ問題に遭遇する。
SSLモデルを微調整するといった典型的なソリューションは、凍結したSSLモデルを機能抽出器として使用する場合、高い計算コストに悩まされる。
これらの問題に対処するため、我々は従来のアダプタに基づく効率的な微調整手法を拡張した。
アダプタと下流モデルの初期化を温めるために、追加の中間適応を追加します。
注目すべきは、適応を達成するために、全体のモデルパラメータの1-5%だけを更新することです。
ML-SUPERBデータセットによる実験結果から,本手法は従来よりも効率の良い微調整性能を示した。
目に見えない言語に適応すると、キャラクタ/フォネムエラー率を最大で28%改善する。
関連論文リスト
- Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - Self-supervised Adaptive Pre-training of Multilingual Speech Models for
Language and Dialect Identification [19.893213508284813]
目標領域や下流タスクの言語に事前学習モデルを適用するために,自己教師付き適応型事前学習を提案する。
SPTはFLEURSベンチマークのXLSR性能を向上し、表現不足言語では40.1%まで向上することを示した。
論文 参考訳(メタデータ) (2023-12-12T14:58:08Z) - Efficiently Adapting Pretrained Language Models To New Languages [9.33333013114014]
近年の大規模言語モデル (LLM) は低リソース言語に準最適性能を示す。
我々は,既存の学習済みLLMをこれらの問題に対処することなく,新しい言語に効率的に適応する方法について検討する。
論文 参考訳(メタデータ) (2023-11-09T20:59:08Z) - CHAPTER: Exploiting Convolutional Neural Network Adapters for
Self-supervised Speech Models [62.60723685118747]
自己教師付き学習(SSL)は、ラベルのないデータから表現を学習するための強力な技術である。
特徴抽出器にCNNアダプタを適用し,SSL音声モデルに特化して設計された効率的なチューニング手法を提案する。
特徴抽出器にCNNを追加することで、感情や話者のタスクへの適応が促進されることを実証的に見出した。
論文 参考訳(メタデータ) (2022-12-01T08:50:12Z) - Exploring Efficient-tuning Methods in Self-supervised Speech Models [53.633222197712875]
自己教師付き学習は、異なる音声タスクの強力な表現を学習することができる。
下流タスクでは、SSLモデルのパラメータは凍結され、アダプタのみがトレーニングされる。
90%以上のパラメータ削減を達成できることを示す。
論文 参考訳(メタデータ) (2022-10-10T11:08:12Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
空白および語彙予測を分解し,ニューラルトランスデューサの因子化モデルを提案する。
この因子化は、音声認識のためのトランスデューサにスタンドアロン言語モデルの改善を移すことが期待できる。
提案した因子化ニューラルトランスデューサは、言語モデル適応にドメイン外テキストデータを使用する場合、15%から20%のWER改善が得られることを示す。
論文 参考訳(メタデータ) (2021-09-27T15:04:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。