Deep incremental learning models for financial temporal tabular datasets
with distribution shifts
- URL: http://arxiv.org/abs/2303.07925v9
- Date: Mon, 18 Sep 2023 09:30:00 GMT
- Title: Deep incremental learning models for financial temporal tabular datasets
with distribution shifts
- Authors: Thomas Wong, Mauricio Barahona
- Abstract summary: The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
- Score: 0.9790236766474201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a robust deep incremental learning framework for regression tasks
on financial temporal tabular datasets which is built upon the incremental use
of commonly available tabular and time series prediction models to adapt to
distributional shifts typical of financial datasets. The framework uses a
simple basic building block (decision trees) to build self-similar models of
any required complexity to deliver robust performance under adverse situations
such as regime changes, fat-tailed distributions, and low signal-to-noise
ratios. As a detailed study, we demonstrate our scheme using XGBoost models
trained on the Numerai dataset and show that a two layer deep ensemble of
XGBoost models over different model snapshots delivers high quality predictions
under different market regimes. We also show that the performance of XGBoost
models with different number of boosting rounds in three scenarios (small,
standard and large) is monotonically increasing with respect to model size and
converges towards the generalisation upper bound. We also evaluate the
robustness of the model under variability of different hyperparameters, such as
model complexity and data sampling settings. Our model has low hardware
requirements as no specialised neural architectures are used and each base
model can be independently trained in parallel.
Related papers
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Recency-Weighted Temporally-Segmented Ensemble for Time-Series Modeling [0.0]
Time-series modeling in process industries faces the challenge of dealing with complex, multi-faceted, and evolving data characteristics.
We introduce the Recency-Weighted Temporally-Segmented (ReWTS) ensemble model, a novel chunk-based approach for multi-step forecasting.
We present a comparative analysis, utilizing two years of data from a wastewater treatment plant and a drinking water treatment plant in Norway.
arXiv Detail & Related papers (2024-03-04T16:00:35Z) - The Bayesian Context Trees State Space Model for time series modelling
and forecasting [8.37609145576126]
A hierarchical Bayesian framework is introduced for developing rich mixture models for real-valued time series.
At the top level, meaningful discrete states are identified as appropriately quantised values of some of the most recent samples.
At the bottom level, a different, arbitrary model for real-valued time series - a base model - is associated with each state.
arXiv Detail & Related papers (2023-08-02T02:40:42Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
We propose a modular machine learning pipeline for ranking predictions on temporal panel datasets.
The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks.
Online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results.
arXiv Detail & Related papers (2022-12-30T17:19:00Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
A simple yet powerful approach is to operate on small subsets of data.
In this work, we propose a generic coreset framework that formulates the coreset selection as a cardinality-constrained bilevel optimization problem.
arXiv Detail & Related papers (2021-09-26T09:08:38Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
We propose a fully Bayesian framework for learning ground truth labels from noisy annotators.
Our framework ensures scalability by factoring a generative, Bayesian soft clustering model over label distributions into the classic David and Skene joint annotator-data model.
arXiv Detail & Related papers (2021-06-20T02:15:20Z) - Do We Really Need Deep Learning Models for Time Series Forecasting? [4.2698418800007865]
Time series forecasting is a crucial task in machine learning, as it has a wide range of applications.
Deep learning and matrix factorization models have been recently proposed to tackle the same problem with more competitive performance.
In this paper, we try to answer whether these highly complex deep learning models are without alternative.
arXiv Detail & Related papers (2021-01-06T16:18:04Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.