論文の概要: FreqX: What neural networks learn is what network designers say
- arxiv url: http://arxiv.org/abs/2411.18343v1
- Date: Wed, 27 Nov 2024 13:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:00.894335
- Title: FreqX: What neural networks learn is what network designers say
- Title(参考訳): FreqX:ニューラルネットワークが学ぶのは、ネットワーク設計者が言うもの
- Authors: Zechen Liu,
- Abstract要約: PFLは、非IID、異種デバイス、公正性の欠如、不明瞭な貢献に悩まされている。
本稿では,信号処理と情報理論を導入した新しい解釈可能性手法であるemphFreqXを提案する。
- 参考スコア(独自算出の注目度): 2.44755919161855
- License:
- Abstract: Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
- Abstract(参考訳): パーソナライズド・フェデラル・ラーニング(PFL)は、クライアントがプライベートデータセットを開示することなく、パーソナライズされたモデルを協調的にトレーニングすることを可能にする。
しかし、PFLは、非IID、異種デバイス、公平性の欠如、そしてこれらの課題を克服するためには、ディープラーニングモデルの解釈可能性が必要な不明瞭な貢献に悩まされている。
これらの課題は解釈可能性に対する新たな要求を提起した。
低コスト、プライバシー、詳細な情報。
それらを満たす現在の解釈可能性法は存在しない。
本稿では,信号処理と情報理論を導入して,新しい解釈可能性手法であるemph{FreqX}を提案する。
実験の結果,FreqXの説明結果は帰属情報と概念情報の両方を含んでいることがわかった。
FreqXは概念情報を含むベースラインよりも少なくとも10倍高速で動作する。
関連論文リスト
- Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
予測確率に関する要約情報を組み込むための簡単な手法を提案する。
利用可能な要約情報は、拡張データとして組み込まれ、ディリクレプロセスでモデル化される。
本稿では,タスクの難易度やクラス不均衡をモデルに示す方法について述べる。
論文 参考訳(メタデータ) (2022-07-04T07:06:45Z) - Explaining Neural Networks without Access to Training Data [8.250944452542502]
ニューラルネットワークのトレーニングデータがアクセスできない場合に、ニューラルネットワークの説明を生成することを検討する。
$mathcalI$-Netsは、ポストホック、グローバルモデル解釈可能性に対するサンプルフリーアプローチとして提案されている。
私たちは$mathcalI$-Netフレームワークを、標準およびソフトな決定木を代理モデルとして拡張します。
論文 参考訳(メタデータ) (2022-06-10T06:10:04Z) - FedQAS: Privacy-aware machine reading comprehension with federated
learning [0.0]
大規模プライベートデータを活用可能なプライバシ保護マシン読取システムであるFedQASを提案する。
FedQASは柔軟で言語に依存しないため、ローカルモデルトレーニングの直感的な参加と実行を可能にしている。
論文 参考訳(メタデータ) (2022-02-09T22:03:35Z) - LAP: An Attention-Based Module for Concept Based Self-Interpretation and
Knowledge Injection in Convolutional Neural Networks [2.8948274245812327]
本稿では,自己解釈性を実現するため,新しい注意型プール層であるLAP(Local Attention Pooling)を提案する。
LAPはどんな畳み込みニューラルネットワークにも簡単にプラグインできる。
LAPは一般的なホワイトボックスの説明法よりも、人間の理解しやすく忠実なモデル解釈を提供する。
論文 参考訳(メタデータ) (2022-01-27T21:10:20Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - Explain by Evidence: An Explainable Memory-based Neural Network for
Question Answering [41.73026155036886]
本稿では,エビデンスに基づくメモリネットワークアーキテクチャを提案する。
データセットを要約し、その決定を下すための証拠を抽出することを学ぶ。
本モデルは,2つの質問応答データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-05T21:18:21Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
フェデレートラーニング(FL)は、ユーザがプライベートラベル付きデータを共有することなく、そのような学習モデルをトレーニングする、新たなアプローチである。
FLでは、各ユーザが学習モデルのコピーをローカルにトレーニングする。その後、サーバは個々の更新を収集し、それらをグローバルモデルに集約する。
普遍ベクトル量子化法をFLと組み合わせることで、訓練されたモデルの圧縮が最小歪みのみを誘導する分散トレーニングシステムが得られることを示す。
論文 参考訳(メタデータ) (2020-06-05T07:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。