論文の概要: FreqX: Analyze the Attribution Methods in Another Domain
- arxiv url: http://arxiv.org/abs/2411.18343v2
- Date: Mon, 31 Mar 2025 06:28:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 15:20:31.007949
- Title: FreqX: Analyze the Attribution Methods in Another Domain
- Title(参考訳): FreqX: 他のドメインにおける属性メソッドの解析
- Authors: Zechen Liu, Feiyang Zhang, Wei Song, Xiang Li, Wei Wei,
- Abstract要約: PFLは、非IID、異種デバイス、公正性の欠如、不明瞭な貢献に悩まされている。
本稿では,信号処理と情報理論を導入した新しい解釈可能性手法であるemphFreqXを提案する。
- 参考スコア(独自算出の注目度): 11.76411086670363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
- Abstract(参考訳): パーソナライズド・フェデラル・ラーニング(PFL)は、クライアントがプライベートデータセットを開示することなく、パーソナライズされたモデルを協調的にトレーニングすることを可能にする。
しかし、PFLは、非IID、異種デバイス、公平性の欠如、そしてこれらの課題を克服するためには、ディープラーニングモデルの解釈可能性が必要な不明瞭な貢献に悩まされている。
これらの課題は解釈可能性に対する新たな要求を提起した。
低コスト、プライバシー、詳細な情報。
それらを満たす現在の解釈可能性法は存在しない。
本稿では,信号処理と情報理論を導入して,新しい解釈可能性手法であるemph{FreqX}を提案する。
実験の結果,FreqXの説明結果は帰属情報と概念情報の両方を含んでいることがわかった。
FreqXは概念情報を含むベースラインよりも少なくとも10倍高速で動作する。
関連論文リスト
- Uncertainty-Aware Explainable Federated Learning [18.088273106409666]
Federated Learning(FL)は、データのプライバシ保護を強化するための機械学習のパラダイムである。
これらの課題に対処するために,不確実性を考慮したeXplainable Federated Learning (UncertainXFL)を提案する。
FL設定下で意思決定プロセスの説明を生成し、これらの説明の不確実性に関する情報を提供する。
論文 参考訳(メタデータ) (2025-03-07T07:29:48Z) - FedLog: Personalized Federated Classification with Less Communication and More Flexibility [24.030147353437382]
フェデレーション表現学習(FRL)は、ローカルデータから効果的な特徴抽出によるパーソナライズされたフェデレーションモデルを学習することを目的としている。
オーバヘッドを低減するため、生モデルパラメータの代わりに十分なデータサマリーを共有することを提案する。
論文 参考訳(メタデータ) (2024-07-11T09:40:29Z) - A Survey on Federated Unlearning: Challenges and Opportunities [32.0365189539138]
本論文は、この新興分野における研究動向と課題を特定することを目的として、未学習の未学習文学を深く研究することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T19:35:08Z) - Clarify: Improving Model Robustness With Natural Language Corrections [59.041682704894555]
モデルを教える標準的な方法は、大量のデータを提供することです。
このアプローチは、データ内の誤解を招く信号を拾うため、モデルに誤ったアイデアを教えることが多い。
モデル誤解をインタラクティブに修正するためのインターフェースと手法であるClarifyを提案する。
論文 参考訳(メタデータ) (2024-02-06T05:11:38Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
本稿では,UFed-GAN: Unsupervised Federated Generative Adversarial Networkを提案する。
実験により,プライバシを保ちながら,限られた計算資源とラベルなしデータに対処するUFed-GANの強い可能性を示す。
論文 参考訳(メタデータ) (2023-08-10T22:52:13Z) - Dynamic Clue Bottlenecks: Towards Interpretable-by-Design Visual Question Answering [58.64831511644917]
本稿では, モデル決定を中間的人間法的な説明に分解する設計モデルを提案する。
我々は、我々の本質的に解釈可能なシステムは、推論に焦点をあてた質問において、同等のブラックボックスシステムよりも4.64%改善できることを示した。
論文 参考訳(メタデータ) (2023-05-24T08:33:15Z) - Look beyond labels: Incorporating functional summary information in
Bayesian neural networks [11.874130244353253]
予測確率に関する要約情報を組み込むための簡単な手法を提案する。
利用可能な要約情報は、拡張データとして組み込まれ、ディリクレプロセスでモデル化される。
本稿では,タスクの難易度やクラス不均衡をモデルに示す方法について述べる。
論文 参考訳(メタデータ) (2022-07-04T07:06:45Z) - Explaining Neural Networks without Access to Training Data [8.250944452542502]
ニューラルネットワークのトレーニングデータがアクセスできない場合に、ニューラルネットワークの説明を生成することを検討する。
$mathcalI$-Netsは、ポストホック、グローバルモデル解釈可能性に対するサンプルフリーアプローチとして提案されている。
私たちは$mathcalI$-Netフレームワークを、標準およびソフトな決定木を代理モデルとして拡張します。
論文 参考訳(メタデータ) (2022-06-10T06:10:04Z) - FedQAS: Privacy-aware machine reading comprehension with federated
learning [0.0]
大規模プライベートデータを活用可能なプライバシ保護マシン読取システムであるFedQASを提案する。
FedQASは柔軟で言語に依存しないため、ローカルモデルトレーニングの直感的な参加と実行を可能にしている。
論文 参考訳(メタデータ) (2022-02-09T22:03:35Z) - LAP: An Attention-Based Module for Concept Based Self-Interpretation and
Knowledge Injection in Convolutional Neural Networks [2.8948274245812327]
本稿では,自己解釈性を実現するため,新しい注意型プール層であるLAP(Local Attention Pooling)を提案する。
LAPはどんな畳み込みニューラルネットワークにも簡単にプラグインできる。
LAPは一般的なホワイトボックスの説明法よりも、人間の理解しやすく忠実なモデル解釈を提供する。
論文 参考訳(メタデータ) (2022-01-27T21:10:20Z) - On Covariate Shift of Latent Confounders in Imitation and Reinforcement
Learning [69.48387059607387]
模擬・強化学習において,未観測の共同設立者と専門家データを併用することの問題点を考察する。
我々は、外部報酬を伴わずに、確立した専門家データから学ぶことの限界を分析する。
我々は,支援医療とレコメンデーションシステムシミュレーションの課題に挑戦する上で,我々の主張を実証的に検証する。
論文 参考訳(メタデータ) (2021-10-13T07:31:31Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
我々は、探索は相互情報を近似するものとみなすべきであると論じる。
これは、表現が元の文とターゲットタスクに関する全く同じ情報をエンコードしているというかなり直感的な結論を導いた。
本稿では,ベイズ的相互情報(Bayesian mutual information)と呼ぶものを測定するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-08T18:08:36Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - Explain by Evidence: An Explainable Memory-based Neural Network for
Question Answering [41.73026155036886]
本稿では,エビデンスに基づくメモリネットワークアーキテクチャを提案する。
データセットを要約し、その決定を下すための証拠を抽出することを学ぶ。
本モデルは,2つの質問応答データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-05T21:18:21Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
本稿では,2組の深層ReLUネットワークを用いたコントラスト型自己教師学習(SSL)手法を理解するための新しい枠組みを提案する。
種々の損失関数を持つSimCLRの各SGD更新において、各層の重みは共分散演算子によって更新されることを示す。
共分散演算子の役割と、そのようなプロセスでどのような特徴が学習されるかをさらに研究するために、我々は、階層的潜在木モデル(HLTM)を用いて、データ生成および増大過程をモデル化する。
論文 参考訳(メタデータ) (2020-10-01T17:51:49Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
フェデレートラーニング(FL)は、ユーザがプライベートラベル付きデータを共有することなく、そのような学習モデルをトレーニングする、新たなアプローチである。
FLでは、各ユーザが学習モデルのコピーをローカルにトレーニングする。その後、サーバは個々の更新を収集し、それらをグローバルモデルに集約する。
普遍ベクトル量子化法をFLと組み合わせることで、訓練されたモデルの圧縮が最小歪みのみを誘導する分散トレーニングシステムが得られることを示す。
論文 参考訳(メタデータ) (2020-06-05T07:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。