Emergence of Self-Identity in AI: A Mathematical Framework and Empirical Study with Generative Large Language Models
- URL: http://arxiv.org/abs/2411.18530v1
- Date: Wed, 27 Nov 2024 17:23:47 GMT
- Title: Emergence of Self-Identity in AI: A Mathematical Framework and Empirical Study with Generative Large Language Models
- Authors: Minhyeok Lee,
- Abstract summary: This paper introduces a mathematical framework for defining and quantifying self-identity in AI systems.
Our framework posits that self-identity emerges from two mathematically quantifiable conditions.
The implications of our study are immediately relevant to the fields of humanoid robotics and autonomous systems.
- Score: 4.036530158875673
- License:
- Abstract: This paper introduces a mathematical framework for defining and quantifying self-identity in artificial intelligence (AI) systems, addressing a critical gap in the theoretical foundations of artificial consciousness. While existing approaches to artificial self-awareness often rely on heuristic implementations or philosophical abstractions, we present a formal framework grounded in metric space theory, measure theory, and functional analysis. Our framework posits that self-identity emerges from two mathematically quantifiable conditions: the existence of a connected continuum of memories $C \subseteq \mathcal{M}$ in a metric space $(\mathcal{M}, d_{\mathcal{M}})$, and a continuous mapping $I: \mathcal{M} \to \mathcal{S}$ that maintains consistent self-recognition across this continuum, where $(\mathcal{S}, d_{\mathcal{S}})$ represents the metric space of possible self-identities. To validate this theoretical framework, we conducted empirical experiments using the Llama 3.2 1B model, employing Low-Rank Adaptation (LoRA) for efficient fine-tuning. The model was trained on a synthetic dataset containing temporally structured memories, designed to capture the complexity of coherent self-identity formation. Our evaluation metrics included quantitative measures of self-awareness, response consistency, and linguistic precision. The experimental results demonstrate substantial improvements in measurable self-awareness metrics, with the primary self-awareness score increasing from 0.276 to 0.801. This enables the structured creation of AI systems with validated self-identity features. The implications of our study are immediately relevant to the fields of humanoid robotics and autonomous systems.
Related papers
- Superficial Consciousness Hypothesis for Autoregressive Transformers [0.0]
Superintelligence (SI) is assumed to be more intelligent than humans, making output-based analysis unreliable.
We propose the Superficial Consciousness Hypothesis under Information Integration Theory (IIT)
We show that a practical estimate of IIT's consciousness metric is relevant to the widely used perplexity metric, and train GPT-2 with those two objectives.
arXiv Detail & Related papers (2024-12-10T08:08:17Z) - Autoformalize Mathematical Statements by Symbolic Equivalence and Semantic Consistency [22.86318578119266]
We introduce a novel framework that scores and selects the best result from k autoformalization candidates based on symbolic equivalence and semantic consistency.
Our experiments on the MATH and miniF2F datasets demonstrate that our approach significantly enhances autoformalization accuracy.
arXiv Detail & Related papers (2024-10-28T11:37:39Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised
Learning [58.93724285214628]
We present Self-guided Masked Autoencoders (SMA), a fully domain-agnostic masked modeling method.
SMA trains an attention based model using a masked modeling objective, by learning masks to sample without any domain-specific assumptions.
We evaluate SMA on three self-supervised learning benchmarks in protein biology, chemical property prediction, and particle physics.
arXiv Detail & Related papers (2024-02-22T18:46:22Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - Probabilistic unifying relations for modelling epistemic and aleatoric uncertainty: semantics and automated reasoning with theorem proving [0.3441021278275805]
Probabilistic programming combines general computer programming, statistical inference, and formal semantics.
ProbURel is based on Hehner's predicative probabilistic programming, but there are several obstacles to the broader adoption of his work.
Our contributions include the formalisation of relations using Unifying Theories of Programming (UTP) and probabilities outside the brackets.
We demonstrate our work with six examples, including problems in robot localisation, classification in machine learning, and the termination of probabilistic loops.
arXiv Detail & Related papers (2023-03-16T23:36:57Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Automated Machine Learning, Bounded Rationality, and Rational
Metareasoning [62.997667081978825]
We will look at automated machine learning (AutoML) and related problems from the perspective of bounded rationality.
Taking actions under bounded resources requires an agent to reflect on how to use these resources in an optimal way.
arXiv Detail & Related papers (2021-09-10T09:10:20Z) - From Undecidability of Non-Triviality and Finiteness to Undecidability
of Learnability [0.0]
We show that there is no general-purpose procedure for rigorously evaluating whether newly proposed models indeed successfully learn from data.
For PAC binary classification, uniform and universal online learning, and exact learning through teacher-learner interactions, learnability is in general undecidable.
There is no one-size-fits-all algorithm for deciding whether a machine learning model can be successful.
arXiv Detail & Related papers (2021-06-02T18:00:04Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z) - A Comparison of Self-Play Algorithms Under a Generalized Framework [4.339542790745868]
The notion of self-play, albeit often cited in multiagent Reinforcement Learning, has never been grounded in a formal model.
We present a formalized framework, with clearly defined assumptions, which encapsulates the meaning of self-play.
We measure how well a subset of the captured self-play methods approximate this solution when paired with the famous PPO algorithm.
arXiv Detail & Related papers (2020-06-08T11:02:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.