論文の概要: Cross-modal Information Flow in Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2411.18620v1
- Date: Wed, 27 Nov 2024 18:59:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:52.996471
- Title: Cross-modal Information Flow in Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルにおけるクロスモーダル情報フロー
- Authors: Zhi Zhang, Srishti Yadav, Fengze Han, Ekaterina Shutova,
- Abstract要約: 大規模言語モデルにおいて,言語と視覚の異なるモダリティ間の情報フローについて検討する。
2つのモダリティを統合する過程には2つの異なる段階があることが分かる。
- 参考スコア(独自算出の注目度): 14.853197288189579
- License:
- Abstract: The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.
- Abstract(参考訳): 近年の自己回帰型マルチモーダル言語モデル(MLLM)の進歩は、視覚言語タスクにおいて有望な進歩を示している。
大規模言語モデルにおける言語情報の処理に関する様々な研究があるが、MLLMの内部動作機構や、これらのモデルにおける言語情報と視覚情報の相互作用についてはほとんど分かっていない。
本研究では,MLLMにおける様々なモダリティ(言語と視覚)間の情報フローを,視覚的質問応答に着目して検討することにより,このギャップを埋めることを目的とする。
具体的には、入力として画像探索ペアが与えられた場合、モデル内のどこでどのように視覚情報と言語情報が組み合わされ、最終的な予測が生成されるかを検討する。
LLaVA級数から一連のモデルで実験を行うことで、2つのモードを統合する過程には2つの異なる段階があることが分かる。
下層では、まずモデルが画像全体のより一般的な視覚的特徴を(言語的な)質問トークンの表現に転送する。
中層では、質問に関連する特定のオブジェクトの視覚情報を、質問のそれぞれのトークン位置に再度転送する。
最後に、上位層では、最終的な予測のために、結果のマルチモーダル表現が入力シーケンスの最後の位置に伝播される。
本研究は,MLLMにおける画像および言語処理の空間的・機能的側面を包括的かつ包括的に把握し,マルチモーダル情報ローカライゼーションと編集の今後の研究を容易にするものである。
関連論文リスト
- Exploring Vision Language Models for Multimodal and Multilingual Stance Detection [9.079302402271491]
ソーシャルメディアのグローバルリーチは情報の拡散を増幅し、堅牢な自然言語処理タスクの必要性を強調している。
以前の研究では主にテキストのみの入力に焦点が当てられ、マルチモーダルなシナリオは比較的過小評価されている。
本稿では,マルチモーダルおよび多言語姿勢検出タスクにおけるVLM(Vision-Language Models)の評価を行う。
論文 参考訳(メタデータ) (2025-01-29T13:39:53Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Towards Interpreting Visual Information Processing in Vision-Language Models [24.51408101801313]
VLM(Vision-Language Models)は、テキストや画像の処理と理解のための強力なツールである。
著名なVLMであるLLaVAの言語モデルコンポーネントにおける視覚トークンの処理について検討する。
論文 参考訳(メタデータ) (2024-10-09T17:55:02Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
マルチモーダル大言語モデルのどの層がグローバルな画像情報に最も力を注いでいるかを検討する。
本研究では,モデルの中間層が,よりグローバルな意味情報を符号化できることを見出した。
最上位のレイヤが過度にローカル情報に集中していることが分かり、グローバル情報をエンコードする能力の低下につながります。
論文 参考訳(メタデータ) (2024-02-27T08:27:15Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
本稿では,既存モデルのマルチモーダル能力を向上するための新しいアプローチを提案する。
提案したモデルであるVeagleは、以前の作品の成功と洞察にインスパイアされたユニークなメカニズムを取り入れています。
以上の結果から,Veagleは既存のモデルよりも優れた性能を示し,性能は5-6%向上した。
論文 参考訳(メタデータ) (2024-01-18T12:45:25Z) - Language Is Not All You Need: Aligning Perception with Language Models [110.51362453720458]
Kosmos-1はMLLM(Multimodal Large Language Model)で、一般的なモダリティを認識し、文脈で学習し、指示に従うことができる。
我々は、任意にインターリーブされたテキストと画像、画像キャプチャペア、テキストデータを含む、Webスケールのマルチモーダルコーパス上で、Kosmos-1をスクラッチからトレーニングする。
実験結果から,Kosmos-1 は (i) 言語理解,生成,さらには OCR フリー NLP において優れた性能を発揮することが示された。
また、MLLMは言語からマルチモーダルへの知識の伝達や多モーダルから言語への知識の伝達といった、クロスモーダル転送の恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2023-02-27T18:55:27Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
視覚と言語(V-L)タスクは、視覚内容と自然言語の両方を理解する必要がある。
視覚と言語に対する注意空間を分離したDiMBERT(Disentangled Multimodal-Attention BERT)を提案する。
DiMBERTは3つのタスクに対して最新のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-10-28T23:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。