Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks
- URL: http://arxiv.org/abs/2406.09836v1
- Date: Fri, 14 Jun 2024 08:46:26 GMT
- Title: Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks
- Authors: Zhiwei Zhang, Minhua Lin, Junjie Xu, Zongyu Wu, Enyan Dai, Suhang Wang,
- Abstract summary: Graph Neural Networks (GNNs) have achieved promising results in tasks such as node classification and graph classification.
Recent studies reveal that GNNs are vulnerable to backdoor attacks, posing a significant threat to their real-world adoption.
We propose using random edge dropping to detect backdoors and theoretically show that it can efficiently distinguish poisoned nodes from clean ones.
- Score: 30.82433380830665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved promising results in tasks such as node classification and graph classification. However, recent studies reveal that GNNs are vulnerable to backdoor attacks, posing a significant threat to their real-world adoption. Despite initial efforts to defend against specific graph backdoor attacks, there is no work on defending against various types of backdoor attacks where generated triggers have different properties. Hence, we first empirically verify that prediction variance under edge dropping is a crucial indicator for identifying poisoned nodes. With this observation, we propose using random edge dropping to detect backdoors and theoretically show that it can efficiently distinguish poisoned nodes from clean ones. Furthermore, we introduce a novel robust training strategy to efficiently counteract the impact of the triggers. Extensive experiments on real-world datasets show that our framework can effectively identify poisoned nodes, significantly degrade the attack success rate, and maintain clean accuracy when defending against various types of graph backdoor attacks with different properties.
Related papers
- DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
We propose DMGNN against out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks.
DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation.
DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-18T01:08:03Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
Graph Neural Networks (GNNs) have shown remarkable performance in various tasks.
Backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers.
arXiv Detail & Related papers (2024-05-17T13:09:39Z) - IDEA: Invariant Defense for Graph Adversarial Robustness [60.0126873387533]
We propose an Invariant causal DEfense method against adversarial Attacks (IDEA)
We derive node-based and structure-based invariance objectives from an information-theoretic perspective.
Experiments demonstrate that IDEA attains state-of-the-art defense performance under all five attacks on all five datasets.
arXiv Detail & Related papers (2023-05-25T07:16:00Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget.
arXiv Detail & Related papers (2023-02-11T01:50:58Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Defending Against Backdoor Attack on Graph Nerual Network by
Explainability [7.147386524788604]
We propose the first backdoor detection and defense method on GNN.
For graph data, current backdoor attack focus on manipulating the graph structure to inject the trigger.
We find that there are apparent differences between benign samples and malicious samples in some explanatory evaluation metrics.
arXiv Detail & Related papers (2022-09-07T03:19:29Z) - Explainability-based Backdoor Attacks Against Graph Neural Networks [9.179577599489559]
There are numerous works on backdoor attacks on neural networks, but only a few works consider graph neural networks (GNNs)
We apply two powerful GNN explainability approaches to select the optimal trigger injecting position to achieve two attacker objectives -- high attack success rate and low clean accuracy drop.
Our empirical results on benchmark datasets and state-of-the-art neural network models demonstrate the proposed method's effectiveness.
arXiv Detail & Related papers (2021-04-08T10:43:40Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
We propose the first backdoor attack to graph neural networks (GNN)
In our backdoor attack, a GNN predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph.
Our empirical results show that our backdoor attacks are effective with a small impact on a GNN's prediction accuracy for clean testing graphs.
arXiv Detail & Related papers (2020-06-19T14:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.