論文の概要: Active Data Curation Effectively Distills Large-Scale Multimodal Models
- arxiv url: http://arxiv.org/abs/2411.18674v1
- Date: Wed, 27 Nov 2024 18:50:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:55.326705
- Title: Active Data Curation Effectively Distills Large-Scale Multimodal Models
- Title(参考訳): 大規模マルチモーダルモデルに有効なアクティブデータキュレーション
- Authors: Vishaal Udandarao, Nikhil Parthasarathy, Muhammad Ferjad Naeem, Talfan Evans, Samuel Albanie, Federico Tombari, Yongqin Xian, Alessio Tonioni, Olivier J. Hénaff,
- Abstract要約: 知識蒸留(KD)は、大規模モデルをより小さなものに圧縮するデファクトスタンダードである。
本研究では, 対照的なマルチモーダル事前学習のための効果的な蒸留法として, 能動的データキュレーションの代替として, 簡単なアプローチを探求する。
我々の単純なオンラインバッチ選択方法であるACIDは、さまざまなモデル、データ、計算構成において、強力なKDベースラインよりも優れています。
- 参考スコア(独自算出の注目度): 66.23057263509027
- License:
- Abstract: Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones. Prior works have explored ever more complex KD strategies involving different objective functions, teacher-ensembles, and weight inheritance. In this work we explore an alternative, yet simple approach -- active data curation as effective distillation for contrastive multimodal pretraining. Our simple online batch selection method, ACID, outperforms strong KD baselines across various model-, data- and compute-configurations. Further, we find such an active data curation strategy to in fact be complementary to standard KD, and can be effectively combined to train highly performant inference-efficient models. Our simple and scalable pretraining framework, ACED, achieves state-of-the-art results across 27 zero-shot classification and retrieval tasks with upto 11% less inference FLOPs. We further demonstrate that our ACED models yield strong vision-encoders for training generative multimodal models in the LiT-Decoder setting, outperforming larger vision encoders for image-captioning and visual question-answering tasks.
- Abstract(参考訳): 知識蒸留(KD)は、大規模モデルをより小さなものに圧縮するデファクトスタンダードである。
以前の研究は、異なる目的関数、教師のアンサンブル、体重継承を含むより複雑なKD戦略を探求してきた。
本研究では, 対照的なマルチモーダル事前学習のための効果的な蒸留法として, 能動的データキュレーションの代替として, 簡単なアプローチを探求する。
我々の単純なオンラインバッチ選択方法であるACIDは、さまざまなモデル、データ、計算構成において、強力なKDベースラインよりも優れています。
さらに、このようなアクティブなデータキュレーション戦略は、実際には標準KDと相補的であり、効果的に組み合わせて高性能な推論効率のモデルを訓練することができる。
我々の単純でスケーラブルな事前学習フレームワークACEDは、最大11%の推論FLOPで、27のゼロショット分類と検索タスクにまたがる最先端の結果を達成している。
さらに,我々のACEDモデルは,LiT-Decoder設定における生成的マルチモーダルモデルのトレーニングに強力な視覚エンコーダを出力し,画像キャプチャや視覚質問応答タスクにおいて,より大きな視覚エンコーダよりも優れていたことを実証した。
関連論文リスト
- CLIP-CID: Efficient CLIP Distillation via Cluster-Instance Discrimination [28.061239778773423]
CLIP(Contrastive Language- Image Pre-Training)は、幅広いタスクにおいて優れたパフォーマンスを実現している。
CLIPは事前学習データのかなりのコーパスに大きく依存しており、計算資源を消費している。
CLIP-CID(CLIP-CID)は,大規模視覚言語基礎モデルからより小さなモデルへ知識を効果的に伝達する蒸留機構である。
論文 参考訳(メタデータ) (2024-08-18T11:23:21Z) - Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning [12.00246872965739]
本稿では,事前学習型マルチモーダル大モデルを用いた動的自己適応型マルチスケール蒸留法を提案する。
我々の戦略は、事前訓練されたマルチモーダル大モデルから構造的知識を抽出できる、マルチスケールな視点を用いている。
提案手法は,出力特徴とオリジナル画像レベル情報のみを用いて,事前学習したマルチモーダル大規模モデルを合理化する。
論文 参考訳(メタデータ) (2024-04-16T18:22:49Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLMは自動回帰言語モデルのためのより効率的で効率的なKDフレームワークである。
DisiLLMは,(1)新しいスキューKulback-Leibler分散損失,(2)学生生成出力の効率向上を目的とした適応型オフ政治アプローチの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-02-06T11:10:35Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
知識蒸留(KD)は、効率的で軽量なモデルの性能を向上させる。
既存のKD技術のほとんどは、Kulback-Leibler(KL)の発散に依存している。
相関距離とネットワークプルーニングを利用したロバストネス強化知識蒸留(R2KD)を提案する。
論文 参考訳(メタデータ) (2023-11-23T11:34:48Z) - One-stop Training of Multiple Capacity Models [74.87789190840527]
本稿では,高容量・低容量モデルとの共同学習のためのワンストップトレーニングフレームワークを提案する。
複数のキャパシティモデルをスクラッチから個別に訓練する知識蒸留とは異なり、我々の手法は異なるキャパシティモデルからの監督を同時に統合する。
論文 参考訳(メタデータ) (2023-05-23T13:44:09Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Knowledge Distillation for Adaptive MRI Prostate Segmentation Based on
Limit-Trained Multi-Teacher Models [4.711401719735324]
圧縮法と加速技術として知識蒸留(KD)が提案されている。
KDは、負担の多いモデルから軽量モデルに知識を移行できる効率的な学習戦略である。
本研究では,KDに基づく前立腺MRIセグメンテーションの深部モデルを構築し,Kellback-Leiblerの発散,Lovasz,Diceの損失と特徴量に基づく蒸留を組み合わせる。
論文 参考訳(メタデータ) (2023-03-16T17:15:08Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - Modality-specific Distillation [30.190082262375395]
マルチモーダルデータセット上の教師から知識を効果的に伝達するモダリティ特異的蒸留(MSD)を提案する。
私たちのアイデアは、各モダリティの補助損失項を導入して、教師のモダリティ特異的予測を模倣することを目指しています。
各モダリティは予測に異なる重要性を持つため、補助的損失に対する重み付けアプローチも提案する。
論文 参考訳(メタデータ) (2021-01-06T05:45:07Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
データに依存しない蒸留フレームワークであるMixKDを提案する。
妥当な条件下では、MixKDは誤差と経験的誤差の間のギャップを小さくする。
限定的なデータ設定とアブレーションによる実験は、提案手法の利点をさらに証明している。
論文 参考訳(メタデータ) (2020-11-01T18:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。