Cyber-Attack Technique Classification Using Two-Stage Trained Large Language Models
- URL: http://arxiv.org/abs/2411.18755v1
- Date: Wed, 27 Nov 2024 21:09:02 GMT
- Title: Cyber-Attack Technique Classification Using Two-Stage Trained Large Language Models
- Authors: Weiqiu You, Youngja Park,
- Abstract summary: We present a sentence classification system that can identify the attack techniques described in natural language sentences from cyber threat intelligence (CTI) reports.
We propose a new method for utilizing auxiliary data with the same labels to improve classification for the low-resource cyberattack classification task.
- Score: 5.713349305091325
- License:
- Abstract: Understanding the attack patterns associated with a cyberattack is crucial for comprehending the attacker's behaviors and implementing the right mitigation measures. However, majority of the information regarding new attacks is typically presented in unstructured text, posing significant challenges for security analysts in collecting necessary information. In this paper, we present a sentence classification system that can identify the attack techniques described in natural language sentences from cyber threat intelligence (CTI) reports. We propose a new method for utilizing auxiliary data with the same labels to improve classification for the low-resource cyberattack classification task. The system first trains the model using the augmented training data and then trains more using only the primary data. We validate our model using the TRAM data1 and the MITRE ATT&CK framework. Experiments show that our method enhances Macro-F1 by 5 to 9 percentage points and keeps Micro-F1 scores competitive when compared to the baseline performance on the TRAM dataset.
Related papers
- Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
Our study addresses the gap by training various machine learning models and using GANs and SMOTE to generate additional data points aimed at attacking text classification models.
Our experiments reveal a significant vulnerability in classification models. Specifically, we observe a 20 % decrease in accuracy for the top-performing text classification models post-attack, along with a 30 % decrease in facial recognition accuracy.
arXiv Detail & Related papers (2024-11-03T18:44:28Z) - Unleashing the Power of Unlabeled Data: A Self-supervised Learning Framework for Cyber Attack Detection in Smart Grids [6.5023425872686085]
We propose a self-supervised learning-based framework to detect and identify various types of cyber attacks.
The proposed framework does not rely on large amounts of well-curated labeled data but makes use of the massive unlabeled data in the wild.
Experiment results in a 5-area power grid system with 37 buses demonstrate the superior performance of our framework over existing approaches.
arXiv Detail & Related papers (2024-05-22T20:04:52Z) - A Dual-Tier Adaptive One-Class Classification IDS for Emerging Cyberthreats [3.560574387648533]
We propose a one-class classification-driven IDS system structured on two tiers.
The first tier distinguishes between normal activities and attacks/threats, while the second tier determines if the detected attack is known or unknown.
This model not only identifies unseen attacks but also uses them for retraining them by clustering unseen attacks.
arXiv Detail & Related papers (2024-03-17T12:26:30Z) - Text generation for dataset augmentation in security classification
tasks [55.70844429868403]
This study evaluates the application of natural language text generators to fill this data gap in multiple security-related text classification tasks.
We find substantial benefits for GPT-3 data augmentation strategies in situations with severe limitations on known positive-class samples.
arXiv Detail & Related papers (2023-10-22T22:25:14Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - Adversarial Training with Complementary Labels: On the Benefit of
Gradually Informative Attacks [119.38992029332883]
Adversarial training with imperfect supervision is significant but receives limited attention.
We propose a new learning strategy using gradually informative attacks.
Experiments are conducted to demonstrate the effectiveness of our method on a range of benchmarked datasets.
arXiv Detail & Related papers (2022-11-01T04:26:45Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Zero-shot learning approach to adaptive Cybersecurity using Explainable
AI [0.5076419064097734]
We present a novel approach to handle the alarm flooding problem faced by Cybersecurity systems like security information and event management (SIEM) and intrusion detection (IDS)
We apply a zero-shot learning method to machine learning (ML) by leveraging explanations for predictions of anomalies generated by a ML model.
In this approach, without any prior knowledge of attack, we try to identify it, decipher the features that contribute to classification and try to bucketize the attack in a specific category.
arXiv Detail & Related papers (2021-06-21T06:29:13Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
We propose new MI attacks to utilize the information of augmented data.
We establish the optimal membership inference when the model is trained with augmented data.
arXiv Detail & Related papers (2020-07-21T02:21:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.