No Query, No Access
- URL: http://arxiv.org/abs/2505.07258v1
- Date: Mon, 12 May 2025 06:19:59 GMT
- Title: No Query, No Access
- Authors: Wenqiang Wang, Siyuan Liang, Yangshijie Zhang, Xiaojun Jia, Hao Lin, Xiaochun Cao,
- Abstract summary: We introduce the textbfVictim Data-based Adrial Attack (VDBA), which operates using only victim texts.<n>To prevent access to the victim model, we create a shadow dataset with publicly available pre-trained models and clustering methods.<n>Experiments on the Emotion and SST5 datasets show that VDBA outperforms state-of-the-art methods, achieving an ASR improvement of 52.08%.
- Score: 50.18709429731724
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Textual adversarial attacks mislead NLP models, including Large Language Models (LLMs), by subtly modifying text. While effective, existing attacks often require knowledge of the victim model, extensive queries, or access to training data, limiting real-world feasibility. To overcome these constraints, we introduce the \textbf{Victim Data-based Adversarial Attack (VDBA)}, which operates using only victim texts. To prevent access to the victim model, we create a shadow dataset with publicly available pre-trained models and clustering methods as a foundation for developing substitute models. To address the low attack success rate (ASR) due to insufficient information feedback, we propose the hierarchical substitution model design, generating substitute models to mitigate the failure of a single substitute model at the decision boundary. Concurrently, we use diverse adversarial example generation, employing various attack methods to generate and select the adversarial example with better similarity and attack effectiveness. Experiments on the Emotion and SST5 datasets show that VDBA outperforms state-of-the-art methods, achieving an ASR improvement of 52.08\% while significantly reducing attack queries to 0. More importantly, we discover that VDBA poses a significant threat to LLMs such as Qwen2 and the GPT family, and achieves the highest ASR of 45.99% even without access to the API, confirming that advanced NLP models still face serious security risks. Our codes can be found at https://anonymous.4open.science/r/VDBA-Victim-Data-based-Adversarial-Attack-36EC/
Related papers
- SAP-DIFF: Semantic Adversarial Patch Generation for Black-Box Face Recognition Models via Diffusion Models [4.970240615354004]
Impersonation attacks are a significant threat because adversarial perturbations allow attackers to disguise themselves as legitimate users.<n>We propose a novel method to generate adversarial patches via semantic perturbations in the latent space rather than direct pixel manipulation.<n>Our method achieves an average attack success rate improvement of 45.66%, and a reduction in the number of queries by about 40%.
arXiv Detail & Related papers (2025-02-27T02:57:29Z) - Large Language Models Merging for Enhancing the Link Stealing Attack on Graph Neural Networks [10.807912659961012]
Link stealing attacks on graph data pose a significant privacy threat.<n>We find that an attacker can combine the data knowledge of multiple attackers to create a more effective attack model.<n>We propose a novel link stealing attack method that takes advantage of cross-dataset and Large Language Models.
arXiv Detail & Related papers (2024-12-08T06:37:05Z) - Adaptive Domain Inference Attack with Concept Hierarchy [4.772368796656325]
Most known model-targeted attacks assume attackers have learned the application domain or training data distribution.<n>Can removing the domain information from model APIs protect models from these attacks?<n>We show that the proposed adaptive domain inference attack (ADI) can still successfully estimate relevant subsets of training data.
arXiv Detail & Related papers (2023-12-22T22:04:13Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - SCME: A Self-Contrastive Method for Data-free and Query-Limited Model
Extraction Attack [18.998300969035885]
Model extraction attacks fool the target model by generating adversarial examples on a substitute model.
We propose a novel data-free model extraction method named SCME, which considers both the inter- and intra-class diversity in synthesizing fake data.
arXiv Detail & Related papers (2023-10-15T10:41:45Z) - Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models [1.2499537119440245]
We focus on embedded deep neural network models on 32-bit microcontrollers in the Internet of Things (IoT)
We propose a black-box approach to craft a successful attack set.
For a classical convolutional neural network, we successfully recover at least 90% of the most significant bits with about 1500 crafted inputs.
arXiv Detail & Related papers (2023-08-31T13:09:33Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
We propose new MI attacks to utilize the information of augmented data.
We establish the optimal membership inference when the model is trained with augmented data.
arXiv Detail & Related papers (2020-07-21T02:21:10Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
Adrial attacks for discrete data (such as texts) are more challenging than continuous data (such as images)
We propose textbfBERT-Attack, a high-quality and effective method to generate adversarial samples.
Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage.
arXiv Detail & Related papers (2020-04-21T13:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.