Federated Continual Graph Learning
- URL: http://arxiv.org/abs/2411.18919v1
- Date: Thu, 28 Nov 2024 05:15:47 GMT
- Title: Federated Continual Graph Learning
- Authors: Yinlin Zhu, Xunkai Li, Miao Hu, Di Wu,
- Abstract summary: We present a pioneering study on Federated Continual Graph Learning (FCGL)
FCGL adapts to multiple evolving graphs within decentralized settings while adhering to storage and privacy constraints.
Our work begins with a comprehensive empirical analysis of FCGL, assessing its data characteristics, feasibility, and effectiveness.
- Score: 7.464095716250756
- License:
- Abstract: In the era of big data, managing evolving graph data poses substantial challenges due to storage costs and privacy issues. Training graph neural networks (GNNs) on such evolving data usually causes catastrophic forgetting, impairing performance on earlier tasks. Despite existing continual graph learning (CGL) methods mitigating this to some extent, they predominantly operate in centralized architectures and overlook the potential of distributed graph databases to harness collective intelligence for enhanced performance optimization. To address these challenges, we present a pioneering study on Federated Continual Graph Learning (FCGL), which adapts GNNs to multiple evolving graphs within decentralized settings while adhering to storage and privacy constraints. Our work begins with a comprehensive empirical analysis of FCGL, assessing its data characteristics, feasibility, and effectiveness, and reveals two principal challenges: local graph forgetting (LGF), where local GNNs forget prior knowledge when adapting to new tasks, and global expertise conflict (GEC), where the global GNN exhibits sub-optimal performance in both adapting to new tasks and retaining old ones, arising from inconsistent client expertise during server-side parameter aggregation. To tackle these, we propose the POWER framework, which mitigates LGF by preserving and replaying experience nodes with maximum local-global coverage at each client and addresses GEC by using a pseudo prototype reconstruction strategy and trajectory-aware knowledge transfer at the central server. Extensive evaluations across multiple graph datasets demonstrate POWER's superior performance over straightforward federated extensions of the centralized CGL algorithms and vision-focused federated continual learning algorithms. Our code is available at https://github.com/zyl24/FCGL_POWER.
Related papers
- OpenGU: A Comprehensive Benchmark for Graph Unlearning [24.605943688948038]
Graph Unlearning (GU) has emerged as a critical solution for privacy-sensitive applications.
We present OpenGU, the first GU benchmark, where 16 SOTA GU algorithms and 37 multi-domain datasets are integrated.
We draw $8$ crucial conclusions about existing GU methods, while also gaining valuable insights into their limitations.
arXiv Detail & Related papers (2025-01-06T02:57:32Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Federated Temporal Graph Clustering [9.779760673367663]
Temporal graph clustering is a complex task that involves discovering meaningful structures in dynamic graphs where relationships and entities change over time.
Existing methods typically require centralized data collection, which poses significant privacy and communication challenges.
We introduce a novel Federated Temporal Graph Clustering framework that enables decentralized training of graph neural networks (GNNs) across multiple clients.
arXiv Detail & Related papers (2024-10-16T08:04:57Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
We present an end-to-end graph representation learning framework called VESPER.
VESPER is capable of training high-performance GNN models over both sparse and dense graphs under reasonable privacy budgets.
arXiv Detail & Related papers (2023-10-31T15:34:59Z) - Lumos: Heterogeneity-aware Federated Graph Learning over Decentralized
Devices [19.27111697495379]
Graph neural networks (GNNs) have been widely deployed in real-world networked applications and systems.
We propose the first federated GNN framework called Lumos that supports supervised and unsupervised learning.
Based on the constructed tree for each client, a decentralized tree-based GNN trainer is proposed to support versatile training.
arXiv Detail & Related papers (2023-03-01T13:27:06Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - FedGL: Federated Graph Learning Framework with Global Self-Supervision [22.124339267195822]
FedGL is capable of obtaining a high-quality global graph model while protecting data privacy.
The global self-supervision enables the information of each client to flow and share in a privacy-preserving manner.
arXiv Detail & Related papers (2021-05-07T11:27:23Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.