論文の概要: Integration of Contextual Descriptors in Ontology Alignment for Enrichment of Semantic Correspondence
- arxiv url: http://arxiv.org/abs/2411.19113v1
- Date: Thu, 28 Nov 2024 12:59:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:33.558650
- Title: Integration of Contextual Descriptors in Ontology Alignment for Enrichment of Semantic Correspondence
- Title(参考訳): 意味的対応強化のためのオントロジーアライメントにおける文脈記述子の統合
- Authors: Eduard Manziuk, Oleksander Barmak, Pavlo Radiuk, Vladislav Kuznetsov, Iurii Krak, Sergiy Yakovlev,
- Abstract要約: 包括的知識モデルを作成するために、本質的および文脈的記述子の統合を可能にする形式化が開発された。
セマンティックアプローチの階層構造と概念間の潜在的な衝突を分析する数学的装置を実証する。
- 参考スコア(独自算出の注目度): 13.69268253901738
- License:
- Abstract: This paper proposes a novel approach to semantic ontology alignment using contextual descriptors. A formalization was developed that enables the integration of essential and contextual descriptors to create a comprehensive knowledge model. The hierarchical structure of the semantic approach and the mathematical apparatus for analyzing potential conflicts between concepts, particularly in the example of "Transparency" and "Privacy" in the context of artificial intelligence, are demonstrated. Experimental studies showed a significant improvement in ontology alignment metrics after the implementation of contextual descriptors, especially in the areas of privacy, responsibility, and freedom & autonomy. The application of contextual descriptors achieved an average overall improvement of approximately 4.36%. The results indicate the effectiveness of the proposed approach for more accurately reflecting the complexity of knowledge and its contextual dependence.
- Abstract(参考訳): 本稿では,文脈記述子を用いた意味オントロジーアライメント手法を提案する。
包括的知識モデルを作成するために、本質的および文脈的記述子の統合を可能にする形式化が開発された。
意味論的アプローチの階層構造と概念間の潜在的な衝突を解析するための数学的装置を,人工知能の文脈における「透明性」と「プライバシー」の例に示す。
実験により、特にプライバシー、責任、自由と自治の領域において、文脈記述子の実装後のオントロジーアライメントの指標が大幅に改善された。
文脈記述子の適用により、平均的な全体的な改善率は4.36%に達した。
その結果,知識の複雑さとその文脈依存をより正確に反映する手法の有効性が示唆された。
関連論文リスト
- Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration [0.0]
本稿では,パラメータの動的セグメンテーションをコンテキスト対応領域に分割することで,大規模計算モデルのアーキテクチャ設計を強化するための革新的なアプローチを提案する。
実験による評価は、様々な言語課題における精度、難易度、文脈的コヒーレンスを大幅に改善したことを示す。
これらの知見は、多様かつ複雑な領域における計算言語アーキテクチャのスケーラビリティと適応性を再定義するコンテキスト分割の可能性を示すものである。
論文 参考訳(メタデータ) (2025-01-22T14:21:04Z) - Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
不整合表現学習の目的については合意が得られない。
本稿では,相互情報制約と独立性制約を統合した非絡み合い表現学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:00:59Z) - Neural Sequence-to-Sequence Modeling with Attention by Leveraging Deep Learning Architectures for Enhanced Contextual Understanding in Abstractive Text Summarization [0.0]
本稿では,単一文書の抽象TSのための新しいフレームワークを提案する。
構造、セマンティック、およびニューラルベースアプローチの3つの主要な側面を統合している。
その結果, 希少語, OOV語処理の大幅な改善が示唆された。
論文 参考訳(メタデータ) (2024-04-08T18:33:59Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
このアプローチは抽象弁証法フレームワークのコンピュータ支援分析を可能にする。
応用例としては、メタ理論的性質の形式的解析と検証がある。
論文 参考訳(メタデータ) (2023-12-08T09:32:26Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
総合ABSAのためのシンタクティック・依存性強化マルチタスクインタラクション・アーキテクチャ(SDEMTIA)を提案する。
我々のアプローチは、SDEIN(Syntactic Dependency Embedded Interactive Network)を用いた構文知識(依存関係と型)を革新的に活用する。
また,学習効率を高めるために,マルチタスク学習フレームワークに,新規で効率的なメッセージパッシング機構を組み込んだ。
論文 参考訳(メタデータ) (2023-11-28T16:03:22Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
本稿では,関係抽出に広く利用されている大規模データセットを用いた実験セットを提案する。
異なる埋め込み空間は、構造的および意味的特性に対して異なる強度を持つことを示す。
これらの結果は,埋め込み型関係抽出法の開発に有用な情報を提供する。
論文 参考訳(メタデータ) (2020-09-23T15:45:32Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
我々は、機械読解の理解を改善するために、常識知識を抽出することを目指している。
構造化知識を文脈内に配置することで,関係を暗黙的に表現することを提案する。
我々は,教師の学習パラダイムを用いて,複数種類の文脈的知識を学生機械読取機に注入する。
論文 参考訳(メタデータ) (2020-09-12T17:20:01Z) - Natural language technology and query expansion: issues,
state-of-the-art and perspectives [0.0]
クエリのあいまいさや誤解釈を引き起こす言語特性と、追加の要因は、ユーザの情報ニーズを正確に表現する能力に影響を与える。
汎用言語に基づく問合せ拡張フレームワークの解剖学を概説し,モジュールに基づく分解を提案する。
それぞれのモジュールについて、文献における最先端のソリューションをレビューし、使用するテクニックの光の下で分類する。
論文 参考訳(メタデータ) (2020-04-23T11:39:07Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。