論文の概要: HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos
- arxiv url: http://arxiv.org/abs/2411.19167v1
- Date: Thu, 28 Nov 2024 14:09:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:35.017935
- Title: HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos
- Title(参考訳): HOT3D:Egocentric Multi-View Videosの3Dによる手と物体の追跡
- Authors: Prithviraj Banerjee, Sindi Shkodrani, Pierre Moulon, Shreyas Hampali, Shangchen Han, Fan Zhang, Linguang Zhang, Jade Fountain, Edward Miller, Selen Basol, Richard Newcombe, Robert Wang, Jakob Julian Engel, Tomas Hodan,
- Abstract要約: 我々は,自我中心手と物体追跡のためのデータセットであるHOT3Dを3Dで導入する。
データセットはマルチビューRGB/モノクローム画像ストリームの833分以上(3.7M画像以上)を提供し、33の多様な剛体オブジェクトと対話する19人の被験者を示している。
実験では,3Dハンドトラッキング,6DoFオブジェクトポーズ推定,未知のインハンドオブジェクトの3次元持ち上げという3つの一般的なタスクに対して,マルチビュー・エゴセントリックデータの有効性を実証した。
- 参考スコア(独自算出の注目度): 9.513100627302755
- License:
- Abstract: We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.
- Abstract(参考訳): 我々は,エゴセントリックな手と物体追跡のための3DデータセットであるHOT3Dを紹介した。
データセットは、33の多様な剛体物体と対話する19人の被験者、目視やシーンポイント雲などのマルチモーダル信号、オブジェクト、手、カメラの3Dポーズを含む総合的な地平線アノテーション、そして手とオブジェクトの3Dモデルを示すマルチビューRGB/モノクロ画像ストリームの833分以上(3.7M画像以上)を提供する。
単純なピックアップ/オブザーバ/プットダウンアクションに加えて、HOT3Dはキッチン、オフィス、リビングルーム環境における典型的なアクションに似たシナリオを含んでいる。
Meta: Project Ariaは軽量AR/AIメガネの研究プロトタイプで、Quest 3は数百万台で販売されているVRヘッドセットだ。
手や物体に付着した小さな光学マーカーを用いたプロのモーションキャプチャーシステムにより、地中トルースポーズが得られた。
ハンドアノテーションはUmeTrackとMANOフォーマットで提供され、オブジェクトは3Dメッシュで表現され、PBR材料は内部スキャナーによって取得される。
実験では,3Dハンドトラッキング,6DoFオブジェクトポーズ推定,未知のインハンドオブジェクトの3次元持ち上げという3つの一般的なタスクに対して,マルチビュー・エゴセントリックデータの有効性を実証した。
HOT3Dによってベンチマークが一意に有効化されている評価されたマルチビュー手法は、シングルビュー手法よりも大幅に優れていた。
関連論文リスト
- Introducing HOT3D: An Egocentric Dataset for 3D Hand and Object Tracking [7.443420525809604]
我々は,自我中心手と物体追跡のためのデータセットであるHOT3Dを3Dで導入する。
データセットはマルチビューのRGB/モノクロ画像ストリームを833分以上提供し、19人の被験者が33の多様な剛体オブジェクトと対話していることを示している。
単純なピックアップ/オブザーバ/プットダウンアクションに加えて、HOT3Dはキッチン、オフィス、リビングルーム環境における典型的なアクションに似たシナリオを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T21:38:17Z) - HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction [16.363878619678367]
ビデオ中の手や物体の3次元再構成とポーズトラッキングのためのデータキャプチャシステムと新しいデータセットHO-Capを導入する。
システムは複数のRGB-DカメラとHoloLensヘッドセットをデータ収集に利用し、高価な3Dスキャナーやモキャップシステムの使用を避ける。
ビデオ中の手や物体の形状やポーズをアノテートする半自動手法を提案し,手動ラベリングと比較してアノテーションの時間を大幅に短縮する。
論文 参考訳(メタデータ) (2024-06-10T23:25:19Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
異なる時間軸に沿った物体の運動キューが3次元多物体追跡において重要であることが判明した。
3つの動き認識コンポーネントからなるフレームワークであるMoMA-M3Tを提案する。
我々はnuScenesとKITTIデータセットに関する広範な実験を行い、MoMA-M3Tが最先端の手法と競合する性能を発揮することを実証した。
論文 参考訳(メタデータ) (2023-08-22T17:53:58Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - Tracking Objects with 3D Representation from Videos [57.641129788552675]
P3DTrackと呼ばれる新しい2次元多目的追跡パラダイムを提案する。
モノクロビデオにおける擬似3Dオブジェクトラベルからの3次元オブジェクト表現学習により,P3DTrackと呼ばれる新しい2次元MOTパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-08T17:58:45Z) - 3D Reconstruction of Objects in Hands without Real World 3D Supervision [12.70221786947807]
ハンドヘルドオブジェクトを再構築するためのモデル学習をスケールアップするために,3Dインスペクションを活用するモジュールを提案する。
具体的には、ビデオから多視点2Dマスクの監視を抽出し、形状収集から3次元形状の前兆を抽出する。
我々はこれらの間接的な3次元キューを用いて、単一のRGB画像から物体の3次元形状を予測する占有ネットワークを訓練する。
論文 参考訳(メタデータ) (2023-05-04T17:56:48Z) - OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic
Perception, Reconstruction and Generation [107.71752592196138]
OmniObject3Dを提案する。OmniObject3Dは,大規模で高品質な3Dオブジェクトを持つ大語彙の3Dオブジェクトデータセットである。
190のカテゴリーで6,000のスキャン対象からなり、一般的な2Dデータセットと共通クラスを共有する。
それぞれの3Dオブジェクトは、2Dと3Dの両方のセンサーでキャプチャされ、テクスチャメッシュ、ポイントクラウド、マルチビューレンダリング画像、複数の実写ビデオを提供する。
論文 参考訳(メタデータ) (2023-01-18T18:14:18Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
本稿では,D3D-HOIについて紹介する。D3D-HOIは3次元オブジェクトのポーズ,形状,動きを,人間と物体の相互作用の時,地上の真理アノテーションを付加したモノクロビデオのデータセットである。
我々のデータセットは、様々な現実世界のシーンとカメラの視点から捉えた、いくつかの共通したオブジェクトで構成されている。
我々は、推定された3次元人間のポーズを利用して、物体の空間的レイアウトとダイナミクスをより正確に推定する。
論文 参考訳(メタデータ) (2021-08-19T00:49:01Z) - Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild
with Pose Annotations [0.0]
3Dオブジェクト検出の最先端を前進させるために、Objectronデータセットを紹介します。
データセットには、9つのカテゴリのポーズアノテーションを備えたオブジェクト中心の短いビデオが含まれ、14,819の注釈付きビデオに400万の注釈付き画像が含まれています。
論文 参考訳(メタデータ) (2020-12-18T00:34:18Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
運動運動を注意深く利用して3次元位置決めの精度を向上させるモノクロ映像を用いた3次元物体検出法を提案する。
我々は、KITTI自動運転データセット内のモノクロ3次元物体検出とバードアイビュータスクの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-07-19T01:15:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。