A Game-Theoretic Approach to the Study of Blockchain's Robustness
- URL: http://arxiv.org/abs/2411.19175v1
- Date: Thu, 28 Nov 2024 14:29:14 GMT
- Title: A Game-Theoretic Approach to the Study of Blockchain's Robustness
- Authors: Ulysse Pavloff,
- Abstract summary: This thesis investigates the robustness of blockchain protocols, specifically focusing on Proof-of-Stake.
We define robustness in terms of two critical properties: Safety, which ensures that the blockchain will not have permanent conflicting blocks, and Liveness, which guarantees the continuous addition of new reliable blocks.
Our research addresses the gap between traditional distributed systems approaches, which classify agents as either honest or Byzantine (i.e. malicious or faulty), and game-theoretic models that consider rational agents driven by incentives.
- Score: 0.0
- License:
- Abstract: Blockchains have sparked global interest in recent years, gaining importance as they increasingly influence technology and finance. This thesis investigates the robustness of blockchain protocols, specifically focusing on Ethereum Proof-of-Stake. We define robustness in terms of two critical properties: Safety, which ensures that the blockchain will not have permanent conflicting blocks, and Liveness, which guarantees the continuous addition of new reliable blocks. Our research addresses the gap between traditional distributed systems approaches, which classify agents as either honest or Byzantine (i.e., malicious or faulty), and game-theoretic models that consider rational agents driven by incentives. We explore how incentives impact the robustness with both approaches. The thesis comprises three distinct analyses. First, we formalize the Ethereum PoS protocol, defining its properties and examining potential vulnerabilities through a distributed systems perspective. We identify that certain attacks can undermine the system's robustness. Second, we analyze the inactivity leak mechanism, a critical feature of Ethereum PoS, highlighting its role in maintaining system liveness during network disruptions but at the cost of safety. Finally, we employ game-theoretic models to study the strategies of rational validators within Ethereum PoS, identifying conditions under which these agents might deviate from the prescribed protocol to maximize their rewards. Our findings contribute to a deeper understanding of the importance of incentive mechanisms for blockchain robustness and provide insights into designing more resilient blockchain protocols.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+ is a novel consensus algorithm to enhance the security of PoS blockchains.
We show that MRL-PoS+ significantly improves the attack resilience of PoS blockchains.
arXiv Detail & Related papers (2024-07-30T17:18:03Z) - SOK: Blockchain for Provenance [0.0]
Provenance, which traces data from its creation to manipulation, is crucial for ensuring data integrity, reliability, and trustworthiness.
Provenance technology has become a popular choice for implementing provenance due to its distributed, transparent, and immutable nature.
Numerous studies on blockchain designs are specifically dedicated to provenance, and specialize in this area.
arXiv Detail & Related papers (2024-07-25T01:46:49Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - It Takes Two: A Peer-Prediction Solution for Blockchain Verifier's Dilemma [12.663727952216476]
We develop a Byzantine-robust peer prediction framework towards the design of one-phase Bayesian truthful mechanisms for the decentralized verification games.
Our study provides a framework of incentive design for decentralized verification protocols that enhances the security and robustness of the blockchain.
arXiv Detail & Related papers (2024-06-03T21:21:17Z) - Blockchains for Internet of Things: Fundamentals, Applications, and Challenges [38.29453164670072]
Not every blockchain system is suitable for specific IoT applications.
Public blockchains are not suitable for storing sensitive data.
We explore the blockchain's application in three pivotal IoT areas: edge AI, communications, and healthcare.
arXiv Detail & Related papers (2024-05-08T04:25:57Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Merkle Trees in Blockchain: A Study of Collision Probability and Security Implications [27.541105686358378]
This study delves into the security aspects of Merkle Trees, a fundamental component in blockchain architectures.
We critically examine the susceptibility of Merkle Trees to hash collisions, a potential vulnerability.
Our findings reveal a direct correlation between the increase in path length and the heightened probability of root collisions.
arXiv Detail & Related papers (2024-02-06T20:11:16Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - SoK: Security of Cross-chain Bridges: Attack Surfaces, Defenses, and Open Problems [43.80265187232706]
Cross-chain bridges are used to facilitate token and data exchanges across blockchains.
Although bridges are becoming increasingly popular, they are still in their infancy and have been attacked multiple times recently.
This paper analyzes the security landscape of cross-chain bridges in a holistic manner.
arXiv Detail & Related papers (2023-12-19T20:13:21Z) - Protecting the Decentralized Future: An Exploration of Common Blockchain
Attacks and their Countermeasures [1.1499361198674167]
Rising number of security threats have attracted cybercriminals as a target.
This research aims to offer a thorough analysis of mitigating blockchain attacks.
The study also highlights how crucial it is to take into account the particular needs of every blockchain application.
arXiv Detail & Related papers (2023-06-20T20:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.