SOWing Information: Cultivating Contextual Coherence with MLLMs in Image Generation
- URL: http://arxiv.org/abs/2411.19182v1
- Date: Thu, 28 Nov 2024 14:35:25 GMT
- Title: SOWing Information: Cultivating Contextual Coherence with MLLMs in Image Generation
- Authors: Yuhan Pei, Ruoyu Wang, Yongqi Yang, Ye Zhu, Olga Russakovsky, Yu Wu,
- Abstract summary: diffusion generative models simulate a random walk in the data space along the denoising trajectory.
This allows information to diffuse across regions, yielding outcomes.
However, the chaotic and disordered nature of information diffusion in diffusion models often results in undesired interference between image regions, causing degraded detail preservation and contextual inconsistency.
We reframing disordered diffusion as a powerful tool for text-vision-to-image generation (TV2I) tasks, achieving pixel-level condition fidelity while maintaining visual and semantic coherence throughout the image.
- Score: 29.49217721233131
- License:
- Abstract: Originating from the diffusion phenomenon in physics, which describes the random movement and collisions of particles, diffusion generative models simulate a random walk in the data space along the denoising trajectory. This allows information to diffuse across regions, yielding harmonious outcomes. However, the chaotic and disordered nature of information diffusion in diffusion models often results in undesired interference between image regions, causing degraded detail preservation and contextual inconsistency. In this work, we address these challenges by reframing disordered diffusion as a powerful tool for text-vision-to-image generation (TV2I) tasks, achieving pixel-level condition fidelity while maintaining visual and semantic coherence throughout the image. We first introduce Cyclic One-Way Diffusion (COW), which provides an efficient unidirectional diffusion framework for precise information transfer while minimizing disruptive interference. Building on COW, we further propose Selective One-Way Diffusion (SOW), which utilizes Multimodal Large Language Models (MLLMs) to clarify the semantic and spatial relationships within the image. Based on these insights, SOW combines attention mechanisms to dynamically regulate the direction and intensity of diffusion according to contextual relationships. Extensive experiments demonstrate the untapped potential of controlled information diffusion, offering a path to more adaptive and versatile generative models in a learning-free manner.
Related papers
- Diffusion Prism: Enhancing Diversity and Morphology Consistency in Mask-to-Image Diffusion [4.0301593672451]
Diffusion Prism is a training-free framework that transforms binary masks into realistic and diverse samples.
We explore that a small amount of artificial noise will significantly assist the image-denoising process.
arXiv Detail & Related papers (2025-01-01T20:04:25Z) - ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer [95.80384464922147]
Continuous visual generation requires the full-sequence diffusion-based approach.
We present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer.
We demonstrate that ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective.
arXiv Detail & Related papers (2024-12-10T18:13:20Z) - Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas [33.334956022229846]
We propose the Merge-Attend-Diffuse operator, which can be plugged into different types of pretrained diffusion models used in a joint diffusion setting.
Specifically, we merge the diffusion paths, reprogramming self- and cross-attention to operate on the aggregated latent space.
Our method maintains compatibility with the input prompt and visual quality of the generated images while increasing their semantic coherence.
arXiv Detail & Related papers (2024-08-28T09:22:32Z) - Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models [82.8261101680427]
Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image.
This property proves beneficial in downstream tasks, including image inversion, inversion, and editing.
We propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth.
arXiv Detail & Related papers (2023-12-07T16:26:23Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation [11.80682025950519]
In this work, we investigate the diffusion (physics) in diffusion (machine learning) properties.
We propose our Cyclic One-Way Diffusion (COW) method to control the direction of diffusion phenomenon.
Our method provides a novel perspective to understand the task needs and is applicable to a wider range of customization scenarios.
arXiv Detail & Related papers (2023-06-14T05:25:06Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Diffusion Models Generate Images Like Painters: an Analytical Theory of Outline First, Details Later [1.8416014644193066]
We observe that the reverse diffusion process that underlies image generation has the following properties.
Individual trajectories tend to be low-dimensional and resemble 2D rotations'
We find that this solution accurately describes the initial phase of image generation for pretrained models.
arXiv Detail & Related papers (2023-03-04T20:08:57Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
Generative adversarial networks (GANs) are challenging to train stably.
We propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate instance noise.
We show that Diffusion-GAN can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs.
arXiv Detail & Related papers (2022-06-05T20:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.