論文の概要: SmartLLMSentry: A Comprehensive LLM Based Smart Contract Vulnerability Detection Framework
- arxiv url: http://arxiv.org/abs/2411.19234v1
- Date: Thu, 28 Nov 2024 16:02:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:10.996290
- Title: SmartLLMSentry: A Comprehensive LLM Based Smart Contract Vulnerability Detection Framework
- Title(参考訳): SmartLLMSentry: LLMベースのスマートコントラクト脆弱性検出フレームワーク
- Authors: Oualid Zaazaa, Hanan El Bakkali,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を利用したスマートコントラクト脆弱性検出手法であるSmartLLMSentryを紹介する。
モデルトレーニングと評価のために、ランダムに選択された5つの脆弱性の特別なデータセットを作成しました。
その結果, GPT-4 はルール生成における GPT-3 と比較して, 精度が 91.1% であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Smart contracts are essential for managing digital assets in blockchain networks, highlighting the need for effective security measures. This paper introduces SmartLLMSentry, a novel framework that leverages large language models (LLMs), specifically ChatGPT with in-context training, to advance smart contract vulnerability detection. Traditional rule-based frameworks have limitations in integrating new detection rules efficiently. In contrast, SmartLLMSentry utilizes LLMs to streamline this process. We created a specialized dataset of five randomly selected vulnerabilities for model training and evaluation. Our results show an exact match accuracy of 91.1% with sufficient data, although GPT-4 demonstrated reduced performance compared to GPT-3 in rule generation. This study illustrates that SmartLLMSentry significantly enhances the speed and accuracy of vulnerability detection through LLMdriven rule integration, offering a new approach to improving Blockchain security and addressing previously underexplored vulnerabilities in smart contracts.
- Abstract(参考訳): ブロックチェーンネットワークにおけるデジタル資産の管理にはスマートコントラクトが不可欠であり、効果的なセキュリティ対策の必要性を強調している。
本稿では,大規模言語モデル(LLM)を利用した新しいフレームワークであるSmartLLMSentryを紹介する。
従来のルールベースのフレームワークは、新しい検出ルールを効率的に統合する際の制限がある。
対照的にSmartLLMSentryはこのプロセスの合理化にLLMを使用している。
モデルトレーニングと評価のために、ランダムに選択された5つの脆弱性の特別なデータセットを作成しました。
その結果, GPT-4 はルール生成における GPT-3 と比較して, 精度が 91.1% であることがわかった。
この研究は、SmartLLMSentryがLSM駆動型ルール統合による脆弱性検出のスピードと正確性を大幅に向上し、Blockchainセキュリティを改善し、スマートコントラクトの未調査脆弱性に対処する新たなアプローチを提供することを示している。
関連論文リスト
- SmartLLM: Smart Contract Auditing using Custom Generative AI [0.0]
本稿では,LLaMA 3.1モデルにレトリーバル拡張生成(RAG)を応用した新しいアプローチであるSmartLLMを紹介する。
ERC標準からドメイン固有の知識を統合することで、SmartLLMはMythrilやSlitherのような静的解析ツールよりも優れたパフォーマンスを実現している。
実験の結果、100%の完全なリコールと70%の精度スコアが示され、脆弱性の特定におけるモデルの堅牢性を強調した。
論文 参考訳(メタデータ) (2025-02-17T06:22:05Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Leveraging Large Language Models and Machine Learning for Smart Contract Vulnerability Detection [0.0]
我々は、モデル性能を比較するために、機械学習アルゴリズムを訓練、テストし、タイプに応じてスマートコントラクトコードを分類する。
我々の研究は、機械学習と大規模言語モデルを組み合わせて、さまざまなスマートコントラクトの脆弱性を検出するリッチで解釈可能なフレームワークを提供します。
論文 参考訳(メタデータ) (2025-01-04T08:32:53Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Smart-LLaMA: Two-Stage Post-Training of Large Language Models for Smart Contract Vulnerability Detection and Explanation [21.39496709865097]
既存のスマートコントラクトの脆弱性検出方法は3つの大きな問題に直面している。
データセットの十分な品質、詳細な説明と正確な脆弱性位置の欠如。
LLaMA言語モデルに基づく高度な検出手法であるSmart-LLaMAを提案する。
論文 参考訳(メタデータ) (2024-11-09T15:49:42Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - FTSmartAudit: A Knowledge Distillation-Enhanced Framework for Automated Smart Contract Auditing Using Fine-Tuned LLMs [17.76505488643214]
本稿では,スマートコントラクト監査において,より小型で微調整されたモデルを用いて,同等あるいは優れた結果が得られる可能性について検討する。
本稿では,スマートコントラクト監査のための費用対効果の高い特化モデルの開発を目的としたFTSmartAuditフレームワークを紹介する。
コントリビューションには,(1)データ準備,トレーニング,評価,継続的な学習を効率化するシングルタスク学習フレームワーク,(2)ドメイン固有知識蒸留を利用した堅牢なデータセット生成手法,(3)モデルの正確性と堅牢性を維持するための適応型学習戦略などが含まれている。
論文 参考訳(メタデータ) (2024-10-17T09:09:09Z) - LLM-SmartAudit: Advanced Smart Contract Vulnerability Detection [3.1409266162146467]
本稿では,スマートコントラクトの脆弱性を検出し解析する新しいフレームワークであるLLM-SmartAuditを紹介する。
LLM-SmartAuditは、マルチエージェントの会話アプローチを用いて、監査プロセスを強化するために、特殊なエージェントとの協調システムを採用している。
私たちのフレームワークは、従来のツールがこれまで見落としていた複雑なロジックの脆弱性を検出することができます。
論文 参考訳(メタデータ) (2024-10-12T06:24:21Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。