論文の概要: How far can bias go? -- Tracing bias from pretraining data to alignment
- arxiv url: http://arxiv.org/abs/2411.19240v1
- Date: Thu, 28 Nov 2024 16:20:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:20:52.736154
- Title: How far can bias go? -- Tracing bias from pretraining data to alignment
- Title(参考訳): 偏見はどこまで続くのか -- 事前学習データからアライメントへのバイアスの追跡
- Authors: Marion Thaler, Abdullatif Köksal, Alina Leidinger, Anna Korhonen, Hinrich Schütze,
- Abstract要約: 本研究では, 事前学習データにおける性別占有バイアスと, LLMにおける性別占有バイアスの相関について検討した。
その結果,事前学習データに存在するバイアスがモデル出力に増幅されることが判明した。
- 参考スコア(独自算出の注目度): 54.51310112013655
- License:
- Abstract: As LLMs are increasingly integrated into user-facing applications, addressing biases that perpetuate societal inequalities is crucial. While much work has gone into measuring or mitigating biases in these models, fewer studies have investigated their origins. Therefore, this study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs, focusing on the Dolma dataset and the OLMo model. Using zero-shot prompting and token co-occurrence analyses, we explore how biases in training data influence model outputs. Our findings reveal that biases present in pre-training data are amplified in model outputs. The study also examines the effects of prompt types, hyperparameters, and instruction-tuning on bias expression, finding instruction-tuning partially alleviating representational bias while still maintaining overall stereotypical gender associations, whereas hyperparameters and prompting variation have a lesser effect on bias expression. Our research traces bias throughout the LLM development pipeline and underscores the importance of mitigating bias at the pretraining stage.
- Abstract(参考訳): LLMはますますユーザ向けアプリケーションに統合されているため、社会的不平等を持続するバイアスに対処することが不可欠である。
これらのモデルでは、多くの研究がバイアスの測定や緩和に取り組んできたが、その起源を調査する研究は少ない。
そこで本研究では,DolmaデータセットとOLMoモデルに着目し,事前学習データにおける性別占有バイアスとLSMにおける性別占有バイアスの相関について検討した。
ゼロショットプロンプトとトークン共起分析を用いて、トレーニングデータのバイアスがモデル出力に与える影響について検討する。
その結果,事前学習データに存在するバイアスがモデル出力に増幅されることが判明した。
この研究は、サブタイプ、ハイパーパラメータ、インストラクションチューニングがバイアス表現に与える影響についても検討し、インストラクションチューニングは、全体のステレオタイプ性関係を維持しながら、部分的に表現バイアスを緩和するのに対して、ハイパーパラメータとインストラクションチューニングはバイアス表現により少ない効果を持つことを示した。
我々の研究は、LLM開発パイプライン全体のバイアスをトレースし、事前学習段階におけるバイアス軽減の重要性を裏付けるものである。
関連論文リスト
- Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection [5.800102484016876]
大規模言語モデル(LLM)は、生成されたコンテンツに様々なバイアスとステレオタイプを示すことが示されている。
本稿では, LLMにおける明示的, 暗黙的な偏見を解明するために, 社会心理学理論に基づく体系的枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-04T14:08:52Z) - Model Debiasing by Learnable Data Augmentation [19.625915578646758]
本稿では,トレーニングを正規化可能なデータ拡張戦略を備えた,新しい2段階学習パイプラインを提案する。
合成および現実的なバイアス付きデータセットの実験は、最先端の分類精度を示し、競合する手法より優れている。
論文 参考訳(メタデータ) (2024-08-09T09:19:59Z) - Less can be more: representational vs. stereotypical gender bias in facial expression recognition [3.9698529891342207]
機械学習モデルは、トレーニングデータからバイアスを継承し、差別的または不正確な予測につながる。
本稿では、データセットから機械学習モデルへの人口統計バイアスの伝播について検討する。
ジェンダーの人口構成に焦点をあて、表現とステレオタイプという2種類の偏見を分析した。
論文 参考訳(メタデータ) (2024-06-25T09:26:49Z) - Evaluating Bias and Fairness in Gender-Neutral Pretrained
Vision-and-Language Models [23.65626682262062]
我々は,3種類の視覚・言語モデルを用いた事前学習および微調整後のバイアス増幅の定量化を行う。
全体として、事前学習および微調整後のバイアス増幅は独立である。
論文 参考訳(メタデータ) (2023-10-26T16:19:19Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Targeted Data Augmentation for bias mitigation [0.0]
我々は、TDA(Targeted Data Augmentation)と呼ばれるバイアスに対処するための、新しく効率的なアプローチを導入する。
バイアスを除去する面倒な作業とは異なり、本手法は代わりにバイアスを挿入することを提案し、結果として性能が向上する。
偏見を特定するために,臨床皮膚病変のデータセットと男女の顔のデータセットの2つの多様なデータセットを注釈した。
論文 参考訳(メタデータ) (2023-08-22T12:25:49Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。