Skeleton Detection Using Dual Radars with Integration of Dual-View CNN Models and mmPose
- URL: http://arxiv.org/abs/2411.19251v1
- Date: Thu, 28 Nov 2024 16:40:58 GMT
- Title: Skeleton Detection Using Dual Radars with Integration of Dual-View CNN Models and mmPose
- Authors: Masaharu Kodama, Runhe Huang,
- Abstract summary: This research proposes three Dual ViewCNN models, combining PointNet and mmPose, employing two mmWave radars.
While the proposed model shows suboptimal results for random walking, it excels in the arm swing case.
- Score: 0.0
- License:
- Abstract: Skeleton detection is a technique that can beapplied to a variety of situations. It is especially critical identifying and tracking the movements of the elderly, especially in real-time fall detection. While conventional image processing methods exist, there's a growing preference for utilizing pointclouds data collected by mmWave radars from viewpoint of privacy protection, offering a non-intrusive approach to elevatesafety and care for the elderly. Dealing with point cloud data necessitates addressing three critical considerations. Firstly, the inherent nature of point clouds -- rotation invariance, translation invariance, and locality -- is managed through the fusion of PointNet and mmPose. PointNet ensures rotational and translational invariance, while mmPose addresses locality. Secondly, the limited points per frame from radar require data integration from two radars to enhance skeletal detection. Lastly,inputting point cloud data into the learning model involves utilizing features like coordinates, velocity, and signal-to-noise ratio (SNR) per radar point to mitigate sparsity issues and reduce computational load. This research proposes three Dual ViewCNN models, combining PointNet and mmPose, employing two mmWave radars, with performance comparisons in terms of Mean Absolute Error (MAE). While the proposed model shows suboptimal results for random walking, it excels in the arm swing case.
Related papers
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.
Radar suffers from noise and positional ambiguity.
We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - SEED: A Simple and Effective 3D DETR in Point Clouds [72.74016394325675]
We argue that the main challenges are challenging due to the high sparsity and uneven distribution of point clouds.
We propose a simple and effective 3D DETR method (SEED) for detecting 3D objects from point clouds.
arXiv Detail & Related papers (2024-07-15T14:21:07Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
millimeter-wave radar sensor maintains stable performance under adverse environmental conditions.
Radar point clouds are relatively sparse and contain massive ghost points.
We propose a novel point cloud super-resolution approach for 3D mmWave radar data, named Radar-diffusion.
arXiv Detail & Related papers (2024-04-09T04:41:05Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
We propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection.
We use point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement.
We conduct extensive experiments on the large-scale dataset to demonstrate that our approach performs well against state-of-the-art methods.
arXiv Detail & Related papers (2023-12-13T18:59:13Z) - Robust 3D Object Detection from LiDAR-Radar Point Clouds via Cross-Modal
Feature Augmentation [7.364627166256136]
This paper presents a novel framework for robust 3D object detection from point clouds via cross-modal hallucination.
We introduce multiple alignments on both spatial and feature levels to achieve simultaneous backbone refinement and hallucination generation.
Experiments on the View-of-Delft dataset show that our proposed method outperforms the state-of-the-art (SOTA) methods for both radar and LiDAR object detection.
arXiv Detail & Related papers (2023-09-29T15:46:59Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - RadarGNN: Transformation Invariant Graph Neural Network for Radar-based
Perception [0.0]
A novel graph neural network is proposed that does not just use the information of the points themselves but also the relationships between them.
The model is designed to consider both point features and point-pair features, embedded in the edges of the graph.
The RadarGNN model outperforms all previous methods on the RadarScenes dataset.
arXiv Detail & Related papers (2023-04-13T13:57:21Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
In autonomous driving, LiDAR and radar are crucial for environmental perception.
Recent state-of-the-art works reveal that the fusion of radar and LiDAR can lead to robust detection in adverse weather.
We propose a bird's-eye view fusion learning-based anchor box-free object detection system.
arXiv Detail & Related papers (2022-11-11T10:24:42Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.