Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data
- URL: http://arxiv.org/abs/2404.06012v1
- Date: Tue, 9 Apr 2024 04:41:05 GMT
- Title: Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data
- Authors: Kai Luan, Chenghao Shi, Neng Wang, Yuwei Cheng, Huimin Lu, Xieyuanli Chen,
- Abstract summary: millimeter-wave radar sensor maintains stable performance under adverse environmental conditions.
Radar point clouds are relatively sparse and contain massive ghost points.
We propose a novel point cloud super-resolution approach for 3D mmWave radar data, named Radar-diffusion.
- Score: 8.552647576661174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The millimeter-wave radar sensor maintains stable performance under adverse environmental conditions, making it a promising solution for all-weather perception tasks, such as outdoor mobile robotics. However, the radar point clouds are relatively sparse and contain massive ghost points, which greatly limits the development of mmWave radar technology. In this paper, we propose a novel point cloud super-resolution approach for 3D mmWave radar data, named Radar-diffusion. Our approach employs the diffusion model defined by mean-reverting stochastic differential equations(SDE). Using our proposed new objective function with supervision from corresponding LiDAR point clouds, our approach efficiently handles radar ghost points and enhances the sparse mmWave radar point clouds to dense LiDAR-like point clouds. We evaluate our approach on two different datasets, and the experimental results show that our method outperforms the state-of-the-art baseline methods in 3D radar super-resolution tasks. Furthermore, we demonstrate that our enhanced radar point cloud is capable of downstream radar point-based registration tasks.
Related papers
- UniBEVFusion: Unified Radar-Vision BEVFusion for 3D Object Detection [2.123197540438989]
Many radar-vision fusion models treat radar as a sparse LiDAR, underutilizing radar-specific information.
We propose the Radar Depth Lift-Splat-Shoot (RDL) module, which integrates radar-specific data into the depth prediction process.
We also introduce a Unified Feature Fusion (UFF) approach that extracts BEV features across different modalities.
arXiv Detail & Related papers (2024-09-23T06:57:27Z) - RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
We present RadarPillars, a pillar-based object detection network.
By decomposing radial velocity data, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset.
This comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.
arXiv Detail & Related papers (2024-08-09T12:13:38Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - Pointillism: Accurate 3D bounding box estimation with multi-radars [6.59119432945925]
We introduce Pointillism, a system that combines data from multiple spatially separated radars with an optimal separation to mitigate these problems.
We present the design of RP-net, a novel deep learning architecture, designed explicitly for radar's sparse data distribution, to enable accurate 3D bounding box estimation.
arXiv Detail & Related papers (2022-03-08T23:09:58Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.