論文の概要: Quantum feedback control with a transformer neural network architecture
- arxiv url: http://arxiv.org/abs/2411.19253v1
- Date: Thu, 28 Nov 2024 16:42:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:12.139292
- Title: Quantum feedback control with a transformer neural network architecture
- Title(参考訳): 変圧器ニューラルネットワークアーキテクチャを用いた量子フィードバック制御
- Authors: Pranav Vaidhyanathan, Florian Marquardt, Mark T. Mitchison, Natalia Ares,
- Abstract要約: 教師付き学習手法を用いて量子フィードバック制御におけるトランスフォーマーの利用を実証する。
本稿では,2段階システムの状態安定化の例を例に,我々のbespoke transformer アーキテクチャが短時間で目標状態への単位忠実性を達成できることを数値的に示す。
我々の手法は、量子誤差補正、色付きノイズの存在下での量子状態の高速制御、リアルタイムチューニング、量子デバイスの特性評価に利用できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Attention-based neural networks such as transformers have revolutionized various fields such as natural language processing, genomics, and vision. Here, we demonstrate the use of transformers for quantum feedback control through a supervised learning approach. In particular, due to the transformer's ability to capture long-range temporal correlations and training efficiency, we show that it can surpass some of the limitations of previous control approaches, e.g.~those based on recurrent neural networks trained using a similar approach or reinforcement learning. We numerically show, for the example of state stabilization of a two-level system, that our bespoke transformer architecture can achieve unit fidelity to a target state in a short time even in the presence of inefficient measurement and Hamiltonian perturbations that were not included in the training set. We also demonstrate that this approach generalizes well to the control of non-Markovian systems. Our approach can be used for quantum error correction, fast control of quantum states in the presence of colored noise, as well as real-time tuning, and characterization of quantum devices.
- Abstract(参考訳): トランスフォーマーのような注意に基づくニューラルネットワークは、自然言語処理、ゲノム学、ビジョンといった様々な分野に革命をもたらした。
本稿では,教師付き学習手法による量子フィードバック制御におけるトランスフォーマーの利用を実証する。
特に, 変圧器の長期時間相関と訓練効率を捉える能力により, 同様のアプローチや強化学習を用いて訓練されたリカレントニューラルネットワークに基づいて, 従来の制御手法の限界を克服できることが示されている。
本稿では,2レベルシステムの状態安定化の例として,非効率な測定やハミルトン摂動がトレーニングセットに含まれていない場合においても,我々のBespoke Transformerアーキテクチャが短時間で目標状態への単体忠実度を達成できることを数値的に示す。
また、このアプローチは非マルコフ系の制御によく応用できることを示した。
我々の手法は、量子誤差補正、色付きノイズの存在下での量子状態の高速制御、リアルタイムチューニング、量子デバイスの特性評価に利用できる。
関連論文リスト
- Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention [0.464982780843177]
量子回路は、カーネルベースの演算子学習の観点から、自己認識機構を効率的に表現できることを示す。
本研究では、単純なゲート演算と多次元量子フーリエ変換を用いて、視覚トランスネットワークの深い層を表現することができる。
我々は,SASTQuaCh(Self-Attention Sequential Quantum Transformer Channel)と呼ばれる新しい変分量子回路を解析し,単純化された分類問題に対するその有用性を実証する。
論文 参考訳(メタデータ) (2024-03-21T18:00:04Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
進化的アルゴリズムに基づく量子状態工学には、機械学習によるアプローチを採用しています。
我々は、単一のモード駆動マイクロ波共振器を介して相互作用する、量子ビットのネットワーク(直接結合のない人工原子の状態に符号化された)を考える。
アルゴリズムは理想的なノイズフリー設定で訓練されているにもかかわらず、高い量子忠実度とノイズに対するレジリエンスを観測する。
論文 参考訳(メタデータ) (2022-06-29T14:34:00Z) - Neural-Network Decoders for Measurement Induced Phase Transitions [0.0]
観測量子系における測定誘起絡み合い相転移は顕著な例である。
測定結果に基づいて基準量子ビットの状態を決定するニューラルネットワークデコーダを提案する。
エンタングルメント相転移は,デコーダ関数の学習可能性に変化をもたらすことを示す。
論文 参考訳(メタデータ) (2022-04-22T19:40:26Z) - Self-Correcting Quantum Many-Body Control using Reinforcement Learning
with Tensor Networks [0.0]
本稿では、強化学習(RL)に基づく量子多体系を効率的に制御するための新しい枠組みを提案する。
我々は、RLエージェントが普遍的な制御を見出すことができ、多くの身体状態を最適に制御する方法を学ぶことができ、量子力学が摂動を受けるとき、制御プロトコルをオンザフライで適用できることを示した。
論文 参考訳(メタデータ) (2022-01-27T20:14:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Model-Free Quantum Control with Reinforcement Learning [0.0]
本研究では,量子制御タスクにおける強化学習エージェントをモデル無しで学習するための回路ベースアプローチを提案する。
実験可能な観測機器の測定値を用いて学習エージェントに報奨を与える方法を示す。
このアプローチは、サンプル効率の観点から、広く使われているモデルフリーメソッドよりも大幅に優れている。
論文 参考訳(メタデータ) (2021-04-29T17:53:26Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。