論文の概要: The role of data-induced randomness in quantum machine learning classification tasks
- arxiv url: http://arxiv.org/abs/2411.19281v1
- Date: Thu, 28 Nov 2024 17:26:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:37.063744
- Title: The role of data-induced randomness in quantum machine learning classification tasks
- Title(参考訳): 量子機械学習分類タスクにおけるデータ誘起ランダム性の役割
- Authors: Berta Casas, Xavier Bonet-Monroig, Adrián Pérez-Salinas,
- Abstract要約: 平均ランダムネスと分類マージンの概念を融合させることにより、二項分類タスク(クラスマージン)の計量を導入する。
この計量は、与えられたデータ埋め込みマップの分類精度と、データ誘導ランダムネスを解析的に結合する。
我々は、クラスマージンを通じてデータ埋め込み戦略をベンチマークし、データ誘発ランダム性が分類性能に制限を与えることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum machine learning (QML) has surged as a prominent area of research with the objective to go beyond the capabilities of classical machine learning models. A critical aspect of any learning task is the process of data embedding, which directly impacts model performance. Poorly designed data-embedding strategies can significantly impact the success of a learning task. Despite its importance, rigorous analyses of data-embedding effects are limited, leaving many cases without effective assessment methods. In this work, we introduce a metric for binary classification tasks, the class margin, by merging the concepts of average randomness and classification margin. This metric analytically connects data-induced randomness with classification accuracy for a given data-embedding map. We benchmark a range of data-embedding strategies through class margin, demonstrating that data-induced randomness imposes a limit on classification performance. We expect this work to provide a new approach to evaluate QML models by their data-embedding processes, addressing gaps left by existing analytical tools.
- Abstract(参考訳): 量子機械学習(QML)は、古典的な機械学習モデルの能力を超えることを目的として、目立った研究領域として急増している。
学習タスクの重要な側面は、データ埋め込みのプロセスであり、モデルのパフォーマンスに直接影響を与えます。
不正に設計されたデータ埋め込み戦略は、学習タスクの成功に大きな影響を及ぼす可能性がある。
その重要性にもかかわらず、データ埋め込み効果の厳密な分析は限られており、多くの場合、効果的な評価方法がない。
本研究では,平均ランダム性と分類マージンの概念を融合させることにより,二項分類タスク,クラスマージンのメトリクスを導入する。
この計量は、与えられたデータ埋め込みマップの分類精度と、データ誘導ランダムネスを解析的に結合する。
我々は、クラスマージンを通じてデータ埋め込み戦略をベンチマークし、データ誘発ランダム性が分類性能に制限を与えることを示した。
この作業は、既存の分析ツールが残したギャップに対処するため、データ埋め込みプロセスによってQMLモデルを評価するための新しいアプローチを提供することを期待しています。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Probabilities-Informed Machine Learning [0.0]
本研究では,出力関数の構造に関するドメイン知識から着想を得たMLパラダイムを提案する。
提案手法は,対象変数の確率的構造を学習プロセスに統合する。
モデル精度を高め、過度な適合と不適合のリスクを軽減する。
論文 参考訳(メタデータ) (2024-12-16T08:01:22Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - An Analysis of Initial Training Strategies for Exemplar-Free
Class-Incremental Learning [36.619804184427245]
CIL(Class-Incremental Learning)は、データストリームから分類モデルを構築することを目的としている。
破滅的な忘れ物のため、過去のクラスの例を保存できない場合、CILは特に困難である。
大量のデータに対する自己管理的な方法で事前訓練されたモデルの使用は、最近勢いを増している。
論文 参考訳(メタデータ) (2023-08-22T14:06:40Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
この研究では、分類データセットのギャップを埋めるための機械学習アルゴリズムの使用について検討した。
Error Correction Output Codesフレームワークを使用して構築されたアンサンブルモデルに重点が置かれた。
大量のラベル付きデータの要求を含む、これらの奨励的な結果にもかかわらず、データ計算の欠如に対する深い学習には障害がある。
論文 参考訳(メタデータ) (2023-06-10T03:29:48Z) - Continual Learning For On-Device Environmental Sound Classification [63.81276321857279]
デバイス上での環境音の分類のための簡易かつ効率的な連続学習法を提案する。
本手法は,サンプルごとの分類の不確実性を測定することにより,トレーニングの履歴データを選択する。
論文 参考訳(メタデータ) (2022-07-15T12:13:04Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - BAMLD: Bayesian Active Meta-Learning by Disagreement [39.59987601426039]
本稿では,メタトレーニングタスクのラベル付け要求数を削減するための情報理論アクティブタスク選択機構を提案する。
本稿では,既存の取得メカニズムと比較した実験結果について報告する。
論文 参考訳(メタデータ) (2021-10-19T13:06:51Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。