論文の概要: An Adversarial Learning Approach to Irregular Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2411.19341v1
- Date: Thu, 28 Nov 2024 19:28:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:06.714687
- Title: An Adversarial Learning Approach to Irregular Time-Series Forecasting
- Title(参考訳): 不規則な時系列予測に対する逆学習手法
- Authors: Heejeong Nam, Jihyun Kim, Jimin Yeom,
- Abstract要約: 本稿では,不規則な時系列のニュアンスをよりよく捉えるために,逆成分を深く分析した逆学習フレームワークを提案する。
本研究は、モデルと評価指標を改善するための実践的な洞察を提供し、不規則な時系列予測のドミアンにおける逆学習の適用の先駆者となる。
- 参考スコア(独自算出の注目度): 0.032771631221674334
- License:
- Abstract: Forecasting irregular time series presents significant challenges due to two key issues: the vulnerability of models to mean regression, driven by the noisy and complex nature of the data, and the limitations of traditional error-based evaluation metrics, which fail to capture meaningful patterns and penalize unrealistic forecasts. These problems result in forecasts that often misalign with human intuition. To tackle these challenges, we propose an adversarial learning framework with a deep analysis of adversarial components. Specifically, we emphasize the importance of balancing the modeling of global distribution (overall patterns) and transition dynamics (localized temporal changes) to better capture the nuances of irregular time series. Overall, this research provides practical insights for improving models and evaluation metrics, and pioneers the application of adversarial learning in the domian of irregular time-series forecasting.
- Abstract(参考訳): 不規則な時系列を予測することは、データのノイズと複雑な性質によって引き起こされる回帰を意味するモデルの脆弱性と、意味のあるパターンを捉え、非現実的な予測をペナルティ化するのに失敗した従来のエラーベースの評価指標の制限という2つの重要な問題によって、大きな課題を提起する。
これらの問題は、しばしば人間の直感に反する予測をもたらす。
これらの課題に対処するために,敵対的要素を深く分析した敵対的学習フレームワークを提案する。
具体的には、不規則な時系列のニュアンスをよりよく捉えるために、グローバルな分布(全パターン)と遷移ダイナミクス(局所的な時間変化)のモデリングのバランスをとることの重要性を強調します。
本研究は、モデルと評価指標を改善するための実践的な洞察を提供し、不規則な時系列予測のドミアンにおける逆学習の適用の先駆者となる。
関連論文リスト
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
時系列予測は多くの現実世界の応用において重要である。
従来の予測技術は、データが不足しているか、全く利用できない場合に苦労する。
近年の進歩は、このようなタスクに大規模な基礎モデルを活用することが多い。
論文 参考訳(メタデータ) (2024-11-24T07:44:39Z) - Deconfounding Time Series Forecasting [1.5967186772129907]
時系列予測は様々な領域において重要な課題であり、正確な予測は情報的な意思決定を促進する。
従来の予測手法は、しばしば将来の結果を予測するために変数の現在の観測に依存している。
本稿では,過去のデータから得られた潜在的共同設立者の表現を取り入れた予測手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T12:45:42Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
時系列予測は、その広範な応用が本質的に困難なため、既存の研究から幅広い関心を集めている。
本稿では,まず,畳み込み操作を用いてマルチスケールの時系列パターンを適応的に分解し,パターン再現の既知に基づいてパターン拡張予測手法を構築し,最終的に畳み込み操作を用いて将来的なパターンを再構築する。
時系列に存在する時間的依存関係を活用することで、MPR-Netは線形時間複雑性を達成するだけでなく、予測プロセスも解釈できる。
論文 参考訳(メタデータ) (2023-07-13T13:16:01Z) - WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting [30.692056599222926]
時系列予測は、現実の応用において高い実用性のために重要な課題となっている。
最近のディープラーニングベースのアプローチは、時系列予測において顕著な成功を収めている。
深層ネットワークはいまだに不安定なトレーニングと過度な適合に悩まされている。
論文 参考訳(メタデータ) (2022-10-25T19:58:02Z) - Time Series Forecasting Models Copy the Past: How to Mitigate [24.397660153755997]
ノイズや不確実性の存在下では、ニューラルネットワークモデルは時系列の最後の観測値を複製する傾向がある。
本稿では、以前に見られた値の複製を罰する正規化項を提案する。
以上の結果から, 正規化という用語は, 上記の問題をある程度緩和し, より堅牢なモデルがもたらされることが示唆された。
論文 参考訳(メタデータ) (2022-07-27T10:39:00Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。