Integrating Transit Signal Priority into Multi-Agent Reinforcement Learning based Traffic Signal Control
- URL: http://arxiv.org/abs/2411.19359v1
- Date: Thu, 28 Nov 2024 20:09:12 GMT
- Title: Integrating Transit Signal Priority into Multi-Agent Reinforcement Learning based Traffic Signal Control
- Authors: Dickness Kakitahi Kwesiga, Suyash Chandra Vishnoi, Angshuman Guin, Michael Hunter,
- Abstract summary: This study integrates Transit Signal Priority (TSP) into multi-agent reinforcement learning (MARL) based traffic signal control.
The two agents, one for each intersection, are centrally trained using a value decomposition network (VDN) architecture.
The trained agents show slightly better performance compared to coordinated actuated signal control based on overall intersection delay at v/c of 0.95.
- Score: 0.0
- License:
- Abstract: This study integrates Transit Signal Priority (TSP) into multi-agent reinforcement learning (MARL) based traffic signal control. The first part of the study develops adaptive signal control based on MARL for a pair of coordinated intersections in a microscopic simulation environment. The two agents, one for each intersection, are centrally trained using a value decomposition network (VDN) architecture. The trained agents show slightly better performance compared to coordinated actuated signal control based on overall intersection delay at v/c of 0.95. In the second part of the study the trained signal control agents are used as background signal controllers while developing event-based TSP agents. In one variation, independent TSP agents are formulated and trained under a decentralized training and decentralized execution (DTDE) framework to implement TSP at each intersection. In the second variation, the two TSP agents are centrally trained under a centralized training and decentralized execution (CTDE) framework and VDN architecture to select and implement coordinated TSP strategies across the two intersections. In both cases the agents converge to the same bus delay value, but independent agents show high instability throughout the training process. For the test runs, the two independent agents reduce bus delay across the two intersections by 22% compared to the no TSP case while the coordinated TSP agents achieve 27% delay reduction. In both cases, there is only a slight increase in delay for a majority of the side street movements.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Adaptive Transit Signal Priority based on Deep Reinforcement Learning and Connected Vehicles in a Traffic Microsimulation Environment [0.0]
This study extends RL - based traffic control to include adaptive transit signal priority (TSP) algorithms.
The agent is shown to reduce the bus travel time by about 21%, with marginal impacts to general traffic at a saturation rate of 0.95.
arXiv Detail & Related papers (2024-07-31T18:17:22Z) - Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
We propose a joint optimization approach for traffic signal control and vehicle routing in signalized road networks.
The objective is to enhance network performance by simultaneously controlling signal timings and route choices using Multi-Agent Deep Reinforcement Learning (MADRL)
Our work is the first to utilize MADRL in determining the optimal joint policy for signal control and vehicle routing.
arXiv Detail & Related papers (2023-10-16T22:10:47Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - COOR-PLT: A hierarchical control model for coordinating adaptive
platoons of connected and autonomous vehicles at signal-free intersections
based on deep reinforcement learning [0.0]
This study proposes a hierarchical control model, named COOR-PLT, to coordinate adaptive CAV platoons at a signal-free intersection.
The model is validated and examined on the simulator of Urban Mobility (SUMO)
arXiv Detail & Related papers (2022-07-01T02:22:31Z) - Effects of Smart Traffic Signal Control on Air Quality [0.0]
Multi-agent deep reinforcement learning (MARL) has been studied experimentally in traffic systems.
A recently developed multi-agent variant of the well-established advantage actor-critic (A2C) algorithm, called MA2C, exploits the promising idea of some communication among the agents.
In this view, the agents share their strategies with other neighbor agents, thereby stabilizing the learning process even when the agents grow in number and variety.
arXiv Detail & Related papers (2021-07-06T02:48:42Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
We study the ability of autonomous vehicles to improve the throughput of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting.
We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20% at a 5% penetration rate to 33% at a 40% penetration rate, can be achieved.
arXiv Detail & Related papers (2020-10-30T22:06:05Z) - Decentralized Deep Reinforcement Learning for Network Level Traffic
Signal Control [0.8838408191955874]
I propose a family of fully decentralized deep multi-agent reinforcement learning (MARL) algorithms to achieve high, real-time performance in traffic signal control.
Each intersection is modeled as an agent that plays a Markovian Game against the other intersection nodes.
Experiment results show that S2R2L has a quicker convergence rate and better convergent performance than IDQL and S2RL in the training process.
arXiv Detail & Related papers (2020-07-02T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.