Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2310.10856v1
- Date: Mon, 16 Oct 2023 22:10:47 GMT
- Title: Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning
- Authors: Xianyue Peng, Hang Gao, Gengyue Han, Hao Wang, Michael Zhang
- Abstract summary: We propose a joint optimization approach for traffic signal control and vehicle routing in signalized road networks.
The objective is to enhance network performance by simultaneously controlling signal timings and route choices using Multi-Agent Deep Reinforcement Learning (MADRL)
Our work is the first to utilize MADRL in determining the optimal joint policy for signal control and vehicle routing.
- Score: 19.024527400852968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban traffic congestion is a critical predicament that plagues modern road
networks. To alleviate this issue and enhance traffic efficiency, traffic
signal control and vehicle routing have proven to be effective measures. In
this paper, we propose a joint optimization approach for traffic signal control
and vehicle routing in signalized road networks. The objective is to enhance
network performance by simultaneously controlling signal timings and route
choices using Multi-Agent Deep Reinforcement Learning (MADRL). Signal control
agents (SAs) are employed to establish signal timings at intersections, whereas
vehicle routing agents (RAs) are responsible for selecting vehicle routes. By
establishing relevance between agents and enabling them to share observations
and rewards, interaction and cooperation among agents are fostered, which
enhances individual training. The Multi-Agent Advantage Actor-Critic algorithm
is used to handle multi-agent environments, and Deep Neural Network (DNN)
structures are designed to facilitate the algorithm's convergence. Notably, our
work is the first to utilize MADRL in determining the optimal joint policy for
signal control and vehicle routing. Numerical experiments conducted on the
modified Sioux network demonstrate that our integration of signal control and
vehicle routing outperforms controlling signal timings or vehicles' routes
alone in enhancing traffic efficiency.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
We propose a DRL-based signal control system that adjusts traffic signals according to the current congestion situation on intersections.
To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks.
arXiv Detail & Related papers (2022-06-28T02:46:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
We propose a novel approach to optimize traffic flow at intersections in mixed traffic situations using deep reinforcement learning.
Our reinforcement learning agent learns a policy for a centralized controller to let connected autonomous vehicles at unsignalized intersections give up their right of way and yield to other vehicles to optimize traffic flow.
arXiv Detail & Related papers (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.