Zero-Forget Preservation of Semantic Communication Alignment in Distributed AI Networks
- URL: http://arxiv.org/abs/2411.19385v1
- Date: Thu, 28 Nov 2024 21:28:18 GMT
- Title: Zero-Forget Preservation of Semantic Communication Alignment in Distributed AI Networks
- Authors: Jingzhi Hu, Geoffrey Ye Li,
- Abstract summary: We propose a zero-forget domain adaptation framework to preserve semantic communications alignment.
The proposed framework perfectly preserves the SC alignment with almost no loss of DA performance, even improved in some cases.
- Score: 38.5438416972178
- License:
- Abstract: Future communication networks are expected to connect massive distributed artificial intelligence (AI). Exploiting aligned priori knowledge of AI pairs, it is promising to convert high-dimensional data transmission into highly-compressed semantic communications (SC). However, to accommodate the local data distribution and user preferences, AIs generally adapt to different domains, which fundamentally distorts the SC alignment. In this paper, we propose a zero-forget domain adaptation (ZFDA) framework to preserve SC alignment. To prevent the DA from changing substantial neural parameters of AI, we design sparse additive modifications (SAM) to the parameters, which can be efficiently stored and switched-off to restore the SC alignment. To optimize the SAM, we decouple it into tractable continuous variables and a binary mask, and then handle the binary mask by a score-based optimization. Experimental evaluations on a SC system for image transmissions validate that the proposed framework perfectly preserves the SC alignment with almost no loss of DA performance, even improved in some cases, at a cost of less than 1% of additional memory.
Related papers
- Efficient Second-Order Neural Network Optimization via Adaptive Trust Region Methods [0.0]
SecondOrderAdaptive (SOAA) is a novel optimization algorithm designed to overcome limitations of traditional second-order techniques.
We empirically demonstrate that SOAA achieves faster and more stable convergence compared to first-order approximations.
arXiv Detail & Related papers (2024-10-03T08:23:06Z) - AdvST: Revisiting Data Augmentations for Single Domain Generalization [39.55487584183931]
Single domain generalization aims to train a robust model against unknown target domain shifts using data from a single source domain.
Standard data augmentations with learnable parameters as semantics transformations can manipulate certain semantics of a sample.
We propose Adversarial learning with Semantics Transformations (AdvST) that augments the source domain data with semantics transformations and learns a robust model with the augmented data.
arXiv Detail & Related papers (2023-12-20T02:29:31Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices.
In this paper, we introduce a new FLAD FedADMM based protocol.
We show that FedADMM consistently outperforms all baseline methods in terms of communication efficiency.
arXiv Detail & Related papers (2022-04-07T15:58:33Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Stochastic Batch Augmentation with An Effective Distilled Dynamic Soft
Label Regularizer [11.153892464618545]
We propose a framework called Batch Augmentation safety of generalization (SBA) to address these problems.
SBA decides whether to augment at iterations controlled by the batch scheduler and in which a ''distilled'' dynamic soft regularization is introduced.
Our experiments on CIFAR-10, CIFAR-100, and ImageNet show that SBA can improve the generalization of the neural networks and speed up the convergence of network training.
arXiv Detail & Related papers (2020-06-27T04:46:39Z) - On the Encoder-Decoder Incompatibility in Variational Text Modeling and
Beyond [82.18770740564642]
Variational autoencoders (VAEs) combine latent variables with amortized variational inference.
We observe the encoder-decoder incompatibility that leads to poor parameterizations of the data manifold.
We propose Coupled-VAE, which couples a VAE model with a deterministic autoencoder with the same structure.
arXiv Detail & Related papers (2020-04-20T10:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.