論文の概要: Concept-driven Off Policy Evaluation
- arxiv url: http://arxiv.org/abs/2411.19395v1
- Date: Thu, 28 Nov 2024 22:15:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:23:17.012625
- Title: Concept-driven Off Policy Evaluation
- Title(参考訳): 概念駆動型オフポリシー評価
- Authors: Ritam Majumdar, Jack Teversham, Sonali Parbhoo,
- Abstract要約: 我々は、概念に基づくOPE推定器のファミリーを開発し、それらが偏りのないままであり、概念が知られ、事前定義されたときにばらつきを減らすことを証明した。
合成および実世界のデータセットを用いた実験により、既知のおよび学習された概念ベース推定器の両方がOPE性能を著しく向上させることが示された。
他のOPE法とは異なり、概念ベースの推定器は容易に解釈可能であり、特定の概念に対する標的的介入を可能にし、これらの推定器の品質をさらに向上させる。
- 参考スコア(独自算出の注目度): 2.789652596206117
- License:
- Abstract: Evaluating off-policy decisions using batch data poses significant challenges due to limited sample sizes leading to high variance. To improve Off-Policy Evaluation (OPE), we must identify and address the sources of this variance. Recent research on Concept Bottleneck Models (CBMs) shows that using human-explainable concepts can improve predictions and provide better understanding. We propose incorporating concepts into OPE to reduce variance. Our work introduces a family of concept-based OPE estimators, proving that they remain unbiased and reduce variance when concepts are known and predefined. Since real-world applications often lack predefined concepts, we further develop an end-to-end algorithm to learn interpretable, concise, and diverse parameterized concepts optimized for variance reduction. Our experiments with synthetic and real-world datasets show that both known and learned concept-based estimators significantly improve OPE performance. Crucially, we show that, unlike other OPE methods, concept-based estimators are easily interpretable and allow for targeted interventions on specific concepts, further enhancing the quality of these estimators.
- Abstract(参考訳): バッチデータを用いた非政治的意思決定の評価は、サンプルサイズが限定的であるため、大きな課題となる。
オフ・ポリティ・アセスメント(OPE: Off-Policy Evaluation)を改善するには、この分散の原因を特定し、対処する必要がある。
近年のConcept Bottleneck Models (CBM) の研究は、人間の説明可能な概念を用いることで予測が改善し、より良い理解が得られることを示している。
分散を低減するため,OPEに概念を取り入れることを提案する。
我々の研究は、概念に基づいたOPE推定器のファミリーを導入し、概念が知られ、事前定義されたときに、それらが偏りのないままであり、ばらつきを減らすことを証明した。
実世界のアプリケーションは、しばしば事前定義された概念を欠いているため、分散還元に最適化された解釈可能、簡潔、多種多様なパラメータ化概念を学習するためのエンドツーエンドのアルゴリズムをさらに発展させる。
合成および実世界のデータセットを用いた実験により、既知のおよび学習された概念ベース推定器の両方がOPE性能を著しく向上することが示された。
重要なことは、他のOPE手法とは異なり、概念ベースの推定器は容易に解釈可能であり、特定の概念に対する標的的介入が可能であり、これらの推定器の品質をさらに向上することである。
関連論文リスト
- Towards Robust and Reliable Concept Representations: Reliability-Enhanced Concept Embedding Model [22.865870813626316]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、人間の理解可能な概念を意思決定の中間体として予測することにより、解釈可能性を高めることを目的としている。
概念に関係のない特徴に対する感受性と、異なるサンプルの同じ概念に対する意味的一貫性の欠如である。
本稿では,Reliability-Enhanced Concept Embedding Model (RECEM) を提案する。Reliability-Enhanced Concept Embedding Model (RECEM) は2つの戦略を導入する。
論文 参考訳(メタデータ) (2025-02-03T09:29:39Z) - Diverse Concept Proposals for Concept Bottleneck Models [23.395270888378594]
概念ボトルネックモデルは解釈可能な予測モデルであり、モデル信頼が医療などの重要な優先事項であるドメインでよく使用される。
提案手法は,データを説明する多くの予測概念を同定する。
複数の代替的な説明を提供することで、人間の専門家が彼らの期待に最も合うものを選ぶことができる。
論文 参考訳(メタデータ) (2024-12-24T00:12:34Z) - MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPredは、トレーニングサンプルで表されるマルチモーダルな概念に基づいて、その予測を説明する。
MulCPredは複数のデータセットとタスクで評価される。
論文 参考訳(メタデータ) (2024-09-14T14:15:28Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL)は、単一のフォワードパスで最小限の追加計算で信頼性の高い不確実性推定を提供する。
まず、主観的論理理論であるEDLの理論的基礎を掘り下げ、他の不確実性推定フレームワークとの区別について議論する。
さまざまな機械学習パラダイムや下流タスクにまたがる広範な応用について詳しく述べる。
論文 参考訳(メタデータ) (2024-09-07T05:55:06Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
概念は人間の思考基盤として知られている。
ディープニューラルネットワーク(DNN)における様々な概念表現とその発見アルゴリズムの体系的レビューと分類について述べる。
また,これらの手法を総合的に調査した最初の論文として,概念に基づくモデル改善文献について詳述する。
論文 参考訳(メタデータ) (2024-03-21T17:09:20Z) - A Unified Concept-Based System for Local, Global, and Misclassification
Explanations [13.321794212377949]
地域概念とグローバル概念の両方を教師なしで学習するための統合された概念ベースシステムを提案する。
我々の主な目的は、代理説明ネットワークを訓練することで、各データカテゴリの根底にある本質的な概念を明らかにすることである。
我々のアプローチは、正確な予測と誤予測の両方を説明するのに役立ちます。
論文 参考訳(メタデータ) (2023-06-06T09:28:37Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Debiasing Concept-based Explanations with Causal Analysis [4.911435444514558]
本研究は,特徴の相違する情報と相関する概念の問題点について考察する。
観測されていない変数の影響をモデル化するための新しい因果前グラフを提案する。
提案手法は,概念が完成していない場合に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T15:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。